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In this study, y/f/e searched for evidence of a strange attractor associated

SUMMARY

with the saturation of middle atmosphere gravity waves in the echo data from
a partial rcflection radar located in Saskatoon, Canada. Theiler's extension of
the Grassberger-Procaccia correlation integral algorithm was used to estimate
the fractal dimension of the attractor. -

Chaotic regimes have been observed in\ experimental fluid studies of the
transition from ordercd to turbulent behavior. ?Breaking gravity waves are
thought to decay to turbulence, transporting momentum from the lower to

Study resudfs
upper atmosphere. 4/E§nendmg $e~results~fren€> laboratory, $tudies? 10 middle
atmosphere gravity waves, it seems reasonable to expect to find a strange
attractor in gravitly wave saturation.

Echo data was analyzed because it offered a high sampling rate. The
Grassberger-Procaccia algorithm places stringent requirements upon the
amount of data necessary to obtain an accurate estimate of the system
dimension; a large number of points is required.

We did not detect a strange attractor with dimension <3 in the data from
the Saskatoon partial reflection radar for the time scales (6 min 39 s) which
were studicdr\; Because of the small number of points which were examined,we
can not asse/r{ that there was only noise in the data. However, the supporting
evidence ffr’ém the power spectra suggest that we mainly investigated time
scales f; the viscous and inertial regions.

(- This study can not assert that a strange attractors is absent in gravity
wave absorption. The’ 'aata requirements to implement the Grassberger=
Procaccia algorithm makc it unlikely that such an attractor, if it exists, will be
detected. f[‘\),(2'3'_31]culations of the amount of data necessary to estimate the
dimension Eindicate that over 6 hours of data would be required to detect a

]
strange attractor in gravity wave absorption.
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CHAPTER 1

INTRODUCTION

In the last 10 years, MLT (mesosphere, lower thermosphere) radars
have been increasingly important in the observation of the middle
atmosphercl. During this same period, gravity waves and gravity wave
saturation have been recognized as playing a vital rolc in the maintenance
and modification of the mesospheric circulation and temperature distribution
(Fritts, 1984). In addition, this same period also saw great advances in the area
popularly referred to as "chaos theory".

Chaotic bchavior (or the presence of strange attractors2) has been
observed in experimental studies of the transition from laminar to turbulent .-
fluid flow (see Swinney (1983) for a review of early experimental results for
different systems). Gravity waves undergoing saturation3 break down; the end
product is turbulence. Techniques have been developed to determine the
presence and dimension of a strange attractor in a set of data (Grassberger and
Procaccia, 1983, 1984). It does not seem unreasonable to expect to find a strange
attractor associated with the saturation of middle atmosphere gravity waves.

Saturatic . oi middlc atmosphere gravity waves has been inferred from
theory and ‘.direct observations. Gravity wave saturation currently provides

the only known mechanism for the observed structure of the mesospheric

1 In this thesis, the commonly accepted definition of the middle atmosphere,
i.e., that region of the atmosphere which encompasses the stratosphere and
mesosphere, will be used. This definition roughly includes the region of the
atmosphere from 10 to 100 km.

2 An attractor is defined as "strange" if its phase space trajectories diverge o
exponentially on the average.

3 The term "gravity wave saturation” refers to any process that acts to limit or
maintain constant wave amplitudes with height.
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circulation (most ‘mportantly, the closing of the mesospheric jets) and the
observed temperature structure. Examples of the indirect evidence of gravity
wave saturation include observations of regions of enhanced turbulent

diffusion, measurements of super-adiabatic lapse rates in the mesosphere and

ity

lower thermosphere and measurements of momentum drag in the mesosphere
(see Fritts (1984) for a detailed description and list of references for these
different observations). The most direct evidence comes from the observations
of Kelvin-Helmholtz billows near the summer mesopause, as revealed in the
perturbation of noctilucent clouds.

Chaos theory has provided some insights into the transition of fluid
flows from orderly to turbulent regimes. Traditional analysis of meteorological
data has ccntered on the search for wavelike or periodic behavior. Tools such
as Fourier analysis yield no meaningful results when applied to aperiodic
signals. Irrcgular or aperiodic signals usually are filtered out or deemed noise.
This noise may hide the presence of a strange attractor within the data. As
Froehling et al. (1981) point out, "power spectral analysis, for example,
characterizes aperiodic bchavior by the presence of broadband noise in the
power spectrum, but broadband noise can be produced by systems requiring
either a small or large number of phase space dimensions."4

The technique of Grassberger and Procaccia (1983, 1984) has been used
to examinc various experimental data sets. Atmanspacher et al. (1988)
employed the correlation integral technique of Grassberger and Procaccia to
examine the chaotic attractor associated with X-ray counts from the neutron
star Her X-1. Tsonis and Elsner (1988) employed this same technique on daytime

" vertical wind velocities in the boundary layer. Brandstiter and Swinney
(1987) applied the Grassberger-Procaccia algorithm to experimental data
obtained from the observation of Couette-Taylor flow. Elgar and Mayer-Kress 3

(1989) applied the corrclation inmtegral téchnique io ocean wave data and found !

——

4 Froehling et al. (1981), p605.
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a system with a correlation dimension greater than 9. Osborne et al. (1986)
used the Grassberger-Procaccia algorithm to find a correlation dimension of
1.4 in the motions of buoys in the Pacific ocean. There are many additional

studies in which this technique was used; some are described in later chapters.

1.1 Motivation

This study proposes to search for a strange attractor associated with the
saturation of middle atmosphere gravity waves in the echo data obtaincd from
a partial reflection radar located in Saskatoon, Canada. This study rests on the
hypothesis that there is a strange attractor associated with the saturation of
middle atmosphere gravity waves and that it can be detected in middle
atmosphere data.

We chose to use the raw echo data from the partial reflection radar
because it had a high sampling rate; the normal post-processing which
retrieves horizontal winds yields only one data point for approximately two
minutes of echo data and introduces a degree of smoothing to the signal. The
relationship between the echoes and the dynamics and physics of the middle
atmosphere is not completely understood; this drawback will hinder the
interpretation of the physical meaning of any attractor that might be found.
The data sct studied here was chosen because of the possibility that it contained
gravity waves and it was given to us (free!).

The laboratory studies described in Chapter 2 suggest that there is a
transitional regime in many fluids between laminar and random behavior,
This transitional regime occurs when some critical stability parameter is
exceeded. Orze this critical threshold is passed, the flow is considered chaotic
and is characterized by a low dimension, non-integer attractor. The dimension
of these systems is integer for stability parameter values which are below the

critical level but becomes non-integer once this critical threshold is passed

5 See Chapter Il for a discussion of the different definitions of dimension.
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and increases as the stability of the system decreases. However, these systems

d take many different routes from ordered (i.e., periodic) to chaotic behavior;

| there does not appear to be a universal route to chaotic behavior. This will be

discussed in detail in Chapter III.

—— —— ——
by

Upward propagating gravity waves are thought to grow until they
become unstable and decay to turbulence, transporting momentum from the
lower atmosphere to the upper atmosphere. Their stability changes
continuously as the gravity waves propagate upward and is a function of the

wave, the atmosphere through which it propagates and the interaction

iy, U

between the wave (or waves, as is the more likely scenario) and the
atmosphere. If the results from laboratory studies can be extended to gravity
waves in the atmosphere, the saturation of middle atmosphere gravity waves
may also be characterized by a transitional regime and hence a strange

attractor. The dimension of this attractor should be a function of altitude, since

the stability of the gravity wave is a function of atmospheric variables which

t vary with height. The dimension of the gravity wave should become non-
’ integer once it becomes saturated and should increase as the wave propagates
'; upward past the saturation level.
This study does not depend on the exact mechanism of gravity wave
’ saturation; therc are many different conceptual models of gravity wave
breaking. It assumes only that gravity waves do become saturated in the
middle atmosphere. There are some mechanisms which limit gravity wave
growth (c.g., nonlinear wave-wave interaction) but do not result in wave
breaking. In addition, other types of fluid instabilities occur in the middle
- atmosphere besides those associated with gravity waves, e.g., Kelvin-Helmholtz
instability. The Kelvin-Helmholtz instability is supported by observations of
billow clouds ncar the summer mesopause (Fritts, 1984).

We focus on gravity waves because the vertical profiles generated by
the radar can be used to monitor the changes in the system dimension as the

wave propagates upward and the stability changes. This does not rule out
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detecting strange attractors in the data which are the result of some other type
of wave and instability. If chaotic behavior in the transition from laminar to
turbulent flow is universal then we should find cvidence of strange attractors

for fluid instabilities other than gravity waves. Two different models of

b
W

gravity wave instability are reviewed in the hope that finding a strange
attractor may offer insight into which model better describes gravity wave
saturation.

The hypothesis that there is a strange attractor associated with the
saturation of middle atmosphere gravity waves which we will be able to detect
rests on many assumptions. The biggest assumption is that the transition to
chaotic behavior observed in experimental studies is applicable to the types of
fluid instabilities that occur in the atmosphere. The second assumption is that
we will be able to detect the presence of a strange attractor in atmospheric
data.

.. Nonc of the fluid studies that have shown the transition from order to
chaos in the iaboratory are a particularly apt analogy for atmospheric gravity
waves. Closed systems (e.g.. Rayleigh-Bénard convection, Couette-Taylor flow)
are very dissimilar to gravity waves. The experimental system closest to

gravity waves in which the transition to chaotic behavior is obscrved is the

excited jet (Bonetti and Boon, 1989). Chaotic behavior may be specific to these
systems and not indicative of a more universal bchavior.

We might not be able to detect a strange attractor in gravity wave
saturation cven if it exists. Experimental studies offer te copportunity to make
a long series of observations of a fluid under precisely controlled conditions.
Such controlled conditions do not exist in the atmosphere; the atmosphere

changes continuously. The search for strange attractors in atmospheric data

f ;
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has been largely unsuccessful despite studies which claim to find them (see
Chapteér 1i for a summary of these studies and our critique). Measurements of
the atmosphere are rarely stationary (in the statistical sense) and never

contain as much data as one would like. These two problems create an almost
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insurmountable obstacle to detecting strange attractors in atmospheric data as
will be discussed in later chapters.

The data set may not contain any evidence of gravity wave saturation.
In laboratory studies, measurements can be made at several locations in the
fluid (especially for closed systems) and over a long period of time under
precisely controlled conditions. In the case of the excited jet, measurements
were made at one location as the flow streamed by. We can not measure gravity
waves in a similar manner. Under ideal conditions, gravity waves will
propagate through the volume of the atmosphere that is probed by the radar
and thercby be dctected. It may be unlikely that gravity waves will undergo
saturation in the volume of the atmosphere that is directly being measured.
However, the turbulence left behind by gravity wave saturation may be

detected as it is advected over the radar site by the mean wind.

1.2 Organization

This work is divided into six chapters. The first chapter, "Introduction”,
is almost complete by this point. The second chapter is titled "Gravity Waves
and Chaos in Fluids" followed by chapter III, "The Methods of Analysis". The
data and its source are reviewed in Chapter IV, "Overview of the Data". The
fifth chapter, "Analysis and Interpretation”, contains the analysis of the data
and describes its meaning. The final chapter, "Conclusion and
Recommendations for Future Work", provides a summary of the conclusions
and suggestions for further work

Chapter II gives a brief review of some of experimental work done on
different types of fluid flows in which chaotic behavior was observed. It
describes some of the most common routes to chaotic behavior observed in
fluid experiments and how they are interpreted. Chapter Il also contains a
brief account of attempts at detecting strange attracters in atmospheric data

and the different flaws in many of these studies. The chapter concludes with a
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very brief review of gravity wave theory; it focuses on two of the many
possible mechanisms behind gravity wave saturation in the upper
atmosphere.

Chapter IIl describes the methods used to analyze the data. Because
analyzing meteorological data for chaotic behavior is relatively new, most of
the chapter is devoted to a detailed overview of the Grassberger—Procaccia
correlation integral algorithm. Tiie strengths, weaknesses and limitations of
this algorithm are thoroughly reviewed. The chapter concludes with a bricf
overview of the more conventional autocorrelation and power spectrum
analysis that will bc used to supplement the analysis of system dimension.

The data used in this analysis is described in Chapter IV. The theory
behind partial reflection radar measurcment techniques is briefly reviewed
because it adds some insight into how to interpret the data. The data set
contained a number of deficiencies which limited the scope of the analysis;
these are also described in Chapter IV,

Chapter V covers the implementation of the analysis, the results and
their interpretation. The first section describes the implementation of the
Grassberger-Procaccia algorithm along with the necessary supporting
analysis. A sample of the results of this analysis is given in the following
section. The chapter concludes with the interpretation and discussion of the
results of the analysis of the system dimension.

The conclusions and recommendations for future work are given in
Chapter VI. This thesis leaves many unanswered questions which provide
ample room for further research. While no evidence of chaotic behavior was
found in this data set, there still remains more work to be done on both :
refining the analysis technique as applied to atmospheric data and searching
for chaotic behavior in the generation of atmospheric turbul.nce.

Appendix A contains the complete set of graphs depicting the results of

[Enep—

the correlation iniegral algorithm analysis. These are included in their

entirety to fully document the negative results of this study. The
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attractor in phase space.

corresponding slopes of the figures shown in Appendix A are included in
Appendix B. The slope of the correlation integral should be equal to the fractal

dimension of the attractor if there are sufficient points to fully saturate the
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f
GRAVITY WAVES AND CHAOS IN FLUIDS
This chapter reviews some of the work on chaotic behavior in different
types of fluid regimes observed in laboratory experiments. It also provides a
/ brief description of attempts to find evidence of a fractal dimension (and thus
: a strange attractor) in atmospheric data. It concludes with a general
1« description of internal gravity waves in the atmosphere and a discussion of
two possible mechanisms of gravity wave breaking.
) 2.1 Chaos_in Laboratory Experiments
v ' Laboratory experiments which examine chaotic behavior in fluids can
be divided into two categories: those in open systems and those in closed
systems. In closed systems, the fluid is confined between rigid boundaries. In
] open systems, the fluid is either not bound by rigid boundaries or the
)
boundaries are far cnough away as to not influence the flow. Couette-Taylor
flow and Rayleigh-Bénard convcction are examples of closed systems. The
excited jet is an open system whose description will follow that of the closed
systems.
-
_ 2.1.1 Closed Systems
4 {
Two of the most frequently examined closcd systems are Rayleigh-
Bénard convcction and Couetie-Taylor flow. Both sysiems provide well defined
o examples of the transition 0 chaotic behavior as exemplified by weakly
Ty
{ developed turbulence.
9
ko
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In the Rayleigh-Bénard system, the fluid is confined between two
parallel plates which are held at different temperatures, usually by heating
the lower plate. The fluid devclops convective cells whose behavior is a
function of the dimensionless Rayleigh number, Rg = (gad3/xv)AT, where g is
the acceleration due to gravity, a the thermal expansion coefficient, d the
distance bectween the two plates, x the thermal diffusivity, v the kinematic
viscosity and AT the tempcraturc boundary conditions on the side walls
(Swinney, 1983).

In the Couette-Taylor system, the fluid is confined between two
concentric cylinders which rotate independently at angular velocity Qi and
Q. Most studies have focused on the case where the rotation rate of the inner
cylinder is zero. The behavior of Couette-Taylor flow is governed by the
dimensionless Reynold's number, R=((b - a)bQq/v), where a and b are the
radii of the inner and outer cylinders respectively, Qo is the angular velocity

of the outer cylinder, and v is the kinematic viscosity (Swinney, 1983).

2.1.1.1 Rayleigh-Bénard Convection

Bonetti and Boon (1989) note that the low dimension chaotic attractor in
Rayleigh-Bénard convection is "a consequence of the high confinement
imposed by the boundaries on the internal flow which results in strong
coupling between modes"!. The end result is spatially coherent "frozen" flow
which is described by a single, low dimension, chaotic attractor. In .21l
aspect ratio? Rayleigh-Bénard systems, the primary routes to chaos are period
doubling and intermittency (Behringer, 1985); see the following section for
definitions of the different routes to chaos.

In large aspect ratio Rayleigh-Bénard systems, chaos is generated by

competition between different unstable modes, each of which can be described

1 Bonetti and Boon (1989), p3322.

2 The aspect ratio is defined as the ratio of the horizontal dimension to the
depth.
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by a localized chaotic attractor (Walden et al., 1985). The turbulence in these
systems is "spatio-temporal” which results in a loss of spatial coherence in the
flow. Behringer (1985) feels the precise route to chaos is still unclear.
Libchaber et al. (1983) studied the route to chaos for Rayleigh-Bénard
convection in the presence of a magnetic field as a function of two control
parameters, the Rayleigh number Ry and the Chandrasekhar number Q; Q is

defined as

oB¢ d2
pv

*

Q
(2.1)

where o is the electrical conductivity, Bg is the magnitude of the horizontal
magnctic ficld, d is the depth of the fluid, p is the fluid density and v is the
kinematic viscosity. The magnetic ficld tends to "stiffen” the fluid allowing
Rayleigh numbers higher than the normal critical values to be investigated;
thus, larger nonlinearities in the convection can be examined. Libchaber et
al. (1983) found period doubling and frequency locking to bc the routes to
chaotic behavior for low Rayleigh numbers and low magnetic fields.
Libchaber ct al. (1983) found quasi-periodicity and soft mode instability (i.e.,
the interaction between oscillatory instability and stationary instability) as

the routcs to chaos for high Rayleigh numbers.

2.1.1.2 Couctie-Tavlor Flow

Brandstiter and Swinncy (1987) examined chaotic behavior in Couette—
Taylor flow. For values of R/R¢ < 11.7, where R and R¢ are the Reynolds and
critical Reynolds number for the system, the dimension of the system is 2 for
modulated, wavy vortex flow. When the ratio of Reynolds numbers exceeds that
threshold, the dimension of the system becomes non-integer and slightly

greater than 2. This threshold also marks the first appearance of broadband
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noise in the power spectrum. Brandstiter and Swinney (1987) note that the
exponential decay in the power spectrum provided further evidence of non-
periodic bchavior corresponding to a low dimension chaotic attractor rather
than stochastic processes. The dimension of the system increased as the ratio
of Reynolds numbers (R/R;) increased above the critical threshold
(Brandstiter et al.,, 1983; Brandstiter and Swinney, 1987).

Brandstiter and Swinney (1987) found that the attractor dimension
characterized flow over the entirc annulus. The dimension was the same
(within the crror limits of the calculation) for mecasurements made at a
number of different locations in the flow. Thus, the attractor characterized the
entire flow in the annulus rather a specific location in the fluid. This result
will not be true of open systems.

Brandstdter and Swinney (1987) found that none of the well established
routes to chaos, e.g., period doubling, intermittency, described the transition to
chaos in this system for the conditions they investigated. They specculate that
their experiment revealed another route to chaos which requires further

study.

2.1.2 Open Systems

The transition to fully developed turbulence is generally investigated in
open systems whereas the transition to weakly developed turbulence is studied
in closed systems. The excited jet provides an example of chaotic behavior in
an open system (Bonetti and Boon, 1989). The excited jet is of interest to us
because of similarities to shear flows in the atmosphere.

Bonetti and Boon (1989) observe that the region of growth of the most
unstable mode in open systems is followed by nonlinear saturation of those
modes which generate advected coherent structures. This process leads to
three dimensional destabilization and breakdown of these coherent structures.

Bonetti and Boon (1989) investigated this highly transitional region in open
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flow as exemplified by the excited jet in an effort to examine the spatial
destabilization of "coherent structures” in the flow.

The excited jet is a strcam of air that is emitted under pressure from a
pipe. The flow is axially symmetric and has a Poiseuille velocity profile as a
function of radial distance from the center of the flow. The jet is excited by
applying a perturbation to the flow (i.e., by vibrating the end of the pipe from :
which the flow emerges).

The excited jet has three distinct regions downstream: the laminar
region, the weakly turbulent zone and the turbulent zone. (Bonetti and Boon,

1989). The laminar region, nearest the source of the flow, is characterized by

stationary macroscopic structures. This region is followed by a weakly

turbulent zone where the macroscopic structures are no longer steady in time.

Farther downstream is the turbulent zone where the macroscopic structures

have disappeared and flow is essentially random; mixing occurs in this zone.

Bonetti and Boon (1989) note that the appearance of these regions was ;.
independent of the excitation frequency, although varying the frequency did
alter their length. They sampled over 8000 periods of the attractor making
between 10 and 30 measurements per period.

Although they could not accurately determine the Kolmogorov entropy,
Bonetti and Boon (1989) did determine that it had a finite non-zero value which
is indicative of chaotic behavior (Grassberger and Procaccia, 1983). Bonetti
and Boon (1989) found that the flow was characterized by a non-integer
dimension which had an initial value of less than 3 but increased farther
downstream 10 between 3 and 4. The increase in attractor dimension
downstream was associated with a corresponding growth in broadband noise
in the power spectrum. The turbulent region was characterized by a
continuous growth in the correlation dimension downstream; the attractor in

this region was not saturated due to an inadequate number of points. This was

AR 4 A BT A 6 4 W

most likely because the flow became essentially random although the limited

number of points in the data sct makes this conclusion tenuous.
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Unlike closed systems where the attractor characterized the flow in the

entirc systcm, the atiractor dimension in open systems only characterized the

flow over a local length scale (Bonetti and Boon, 1989). The local length scale is

defined as the distance to the first zero in the upatial autocorrelation or the
distance to the first local minimum in the spatial mutual information.
Intuitively, this makes sense. The attractor dimension in closed systems
increases as an external stability criteria decreases; the change in stability
<haracterizes the entire system. The instability in the open jet amplifies
downstream corresponding to a continuum of stability changes in the
downstrecam direction. Consequently, the attractor dimension grows
downstream as the instability amplifies. Each downstream location in open
flow is analogous to a different external siability criterion in closed flow.
Since each stability criterion in closed flow had a characteristic attractor
dimension, so will each downstream location in open flow (to within the local

length scale) have its characteristic dimension.

2.1.3 Routes to Chaos

There are several well established routes to chaotic behavior:
intermittency, frequency locking, period doubling and the periodic~-quasi-
periodic-chaotic sequence. Each has been obscrved in experiments conducted
on different types of fluid flows. Behringer (1985) notes that the origins of
turbulence in convecting layers are usually due to the nonlinear interaction
of macroscopic modes rather than microscopic fluctuations. He goes on to
observe that "a strange attractor is a very complex region of phase space, now

commonly associated with the onset of turbulence".3

S ARt e s i i T S & TR g ot i o a2 A

3Behringer (1985) p672.
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4 2.1.3.1 Intermittency

\i
] Some systems exhibit a transition from periodic behavior (R < RT, where
3

R is some transition parameter and Rt is some critical value) to chaotic

e,

behavior (R > Rr) which is characterized by occasional bursts of noie. For R

only sightly greater than RT, there are long intervals of periodic behavior

' interrupted by short bursts of noise. With incrcasing values of R, the interval
between bursts of noise decreases until it eventually becomes impossible to
distinguish the original underlying periodic state. Bcehringer (1985) notes that

/ intermittency occurs when a stable and unstable attractor merge.

. Intermittency as a route to chaotic behavior has been observed in

. convection experiments (Swinney, 1983) and Rayleigh-Bénard convection

(Behringer, 1985).

2.1.3.2 Frequency Locking

. Frequency locking is defined as the transition from a quasi-periodic

, statc to a frequency locked (periodic) state for some increasing value of a
control parameter. The quasi-periodic state persists over a wide range of the
control parameter, followed by a well defined transition 10 a chaotic state.

; Frequency locking has been observed as a route to chaos in Rayleigh-

Bénard convection (Swinney, 1983).

2.1.3.3 Period Doubling

- O - -

[

Period doubling occurs when a single stable solution bifurcates into

} alternating between two stable solutions once a critical threshold is reached.

o,

The solutions bifurcate again as the critical paramecter further increases. The

ratio between successive bifurcations is given by Feigenbaum's number.
Period doubling has been observed as a route chaotic to behavior in

i ‘. Rayleigh-Bénard convection (Swinney, 1983; Bchringer, 1985; Libchaber et al.,

| 1983) and shallow water waves (Swinney, 1983).

15




2.1.3.4 Periodic-Quasi-Periodic-Chaotic Sequence

The periodic-quasi-periodic-chaotic sequence is defined as the
transition of a system which is periodic (i.e., characterized by only one
frequency) to quasi-periodic (i.e., a system characterized by two
incommensurate frequencies) to one which is chaotic (i.e., a system
characterized by three or more incommensurate frequencies).

This route to chaotic behavior has been observed in Couette-Taylor flow
(Swinney, 1983).

2.2 Chaos in the Atmosphere

There have been a number of studies of strange attractors in
meteorological data. Most of these have focused on the longer time scales of the
synoptic and climactic range. Much of the work on the longer time scales has
been prompted by Lorenz's pionecring identification of a strange attractor in
a model of the general circulation (Lorenz, 1963). Very little work has been

done on the time scales over which waves decay to turbulence.

2.2.1 Shont Time Scales

Tsonis and Elsner (1988) searchcd for an attractor over very short time
scales in vertical vcloéity data from the boundary layer. They estimated a
dimension of ~ 7.3 for vertical winds measured at 10 m height during the day
in Boulder, Colorado. The data consisted of 10 second averages of 10 m vertical
winds measured over an 11 hour period from 1330 - 0030 GMT, totalling 3960
points.

The estimate of the system dimension by Tsonis and Elsner (1988) is
flawed for several different reasons. Smith (1989) showed that over 2.3x10!!

points would be required to accurately obtain a dimension of 7.3, while earlier
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estimates of the number of points required to obtain the attractor dimension

v (i.e., 109210092 ) suggest that over 107 points would be needed to accurately
obtain an attractor dimension of 7.3! It is unlikely that one could specify the

¢ dimension of a system with eight degrees of freedom from an analysis of only
3960 data points.

Tsonis and Elsner (1988) had no initial hypothesis as to why there would
be an attractor in the data set. They speculated that the attractor was connected
with a convective system described by at least eight differential equations and
might be rclated to the Lorenz systcm. In addition, this data set was certainly

/ non-stationary, a fact not considered by Tsonis and Elsner (1988). Any estimate
of an attractor dimension must consider stationarity, else the data suggest the
presence of a finite dimension strange attractor where there is none (see
Chapter II1 for a more thorough discussion).

Henderson and Wells (1988) also used vertical velocity data from the

. boundary layer to estimate the dimcnsion of an attractor. Their data consisted

of the ventical velocities at 10 m above the ground measured by a sonic

’ anemometer during the passage of a thunderstorm gust front over an ~ 10

minute period. Henderson and Wells (1988) found evidence of an attractor with
dimensions between 4.0 and 5.5. To accurately obtain a dimension of 4 or

, greater would have required more than 3x100 points! While Henderson and

Wells (1988) did not specify the number of points thcy used in their analysis,

the number of points required for an accurate dimension estimate implies a

minimum sampling rate of 5000 Hz. It is unlikely that there werc a sufficient

. number of pcints to determine the attractor dimension.

oo 222 Long Time Scales

Most studics looking for auractors in aimospheric daia consider longer
time scales. Fraedrich (1986) used the Grassberger-Procaccia algorithm to
{ determine the dimension of an attractor in surface pressure data, sunshine

: duration data and 500 mb zonal wave amplitude data. In a later study
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(Fraedrich, 1987), he examined similar data to determine the dimension of the
systems under consideration and also investigated the predictability.

The surface pressure data consisted of 15 years (5475 points) of surface
pressure measurements made at 0600 GMT in Berlin, West Germany. Fraedrich
considered two cases: 15 years of the annual cycle, and seasonal data sets made
over 14 winter and 15 summer seasons. Fraedrich (1986) found no evidence of
an attractor with a finite dimension for the continuous data set. In contrast,
Fraedrich (1986) calculated dimensions of 3.2 and 3.9 for the winter and
summer seasons, respectively. However, in another study of the same data set
published a year later, Fraedrich (1987) found a dimension of 2 6.8-7.1. He gave
no reason for the difference in the latter finding.

Fracdrich (1986) rcpeated these calculations for a 30 year record of the
number of daily sunshine hours. Again, the data set was considered as two
separate cases: a 30 year continuous record and scparate winter (29) and
summer scasons (30). As for the surface pressure data, Fraedrich (1986) found
no evidence for an attractor with a finite dimension in the continuous record,
but estimated dimensions of 3.1 and 4.3 for the winter and summer seasons,
respectively.

Fraedrich (1986) repeated the analysis for 10 years of 500 mb zonal wind
data at 50°N. The continuous record did not support evidence of a finite
dimension attractor. Fraedrich (1986) calculated dimensions of 3 and 3.6 for
the winter and summer cases, respectively.

On the climactic scale, Fraedrich (1987) used an oxygen isotope record
from deep sea core analysis to obtain a dimension of 4.4-4.8 for an attractor.
The predictability of this attractor was between 10000-15000 years.

Grassberger (1986) also searched for evidence of a climactic attractor in
oxygen isotope ratios from deep sea cores. He found no evidence of a finite
dimensional attractor in the data set. The small number of data points used in

the study prevented attributing a dimension less than 10 to the system.
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Keppenne and Nicolis (1989) applied the Grassberger~Procaccia
algorithm to 9000 days of 500 mb geopotential height records from 5 stations
over western Europe. They calculated a dimension of 7.5 with a dispersion of
10% for the attractor in this data. They discovered fractal dimensions in the
data from each station as well as the average of the five stations. Keppenne
and Nicolis (1989) used empirical orthogonal functions to support their
findings.

These studies suffered from the same shortcomings that plagued the
shorter time scale investigations. In all cases, it is difficult to support evidence
of an attractor given a limited number of points in the calculation of the
dimension. In a later section we will describe the number of points necessary
to accurately estimate thc dimension of an attractor.

Fraedrich's studies (Fraedrich, 1986) of the different synoptic scale data
would have required at least 74,088 points, a number far greater than the 7300
actually uscd. The revised dimension for the surface pressure attractor, d = 6.8
- 7.1 (Fraedrich, 1987), would have required 5,489,031,744 points, an even
larger figure! The dimension estimate for the climactic scale attractor obtained
from the oxygen isotope data is similarly flawed. To support evidence of a
dimension of 7.5, Keppenne and Nicolis (1989) would have needed more than
2.3x10!1 points instead of the 18,000 they used. However, their dimension
estimate was supporied by a similar finding using a completely independent
technique and thus can be given more credence.

Unlike those for short time scales, large scale studies have a stronger
theoretical basis; the work of Lorenz (1963) shows the presence of a strange
attractor for the synoptic or climactic time scales. The shorter time scales lack

this theoretical underpinning.
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2.3 Gravity Waves and Gravity Wave Breaking

1 Internal atmospheric gravity waves (sometimes referred to as buoyancy
waves) werce first proposed by Hines (1960) as a mechanism for describing
observations of travelling ionospheric disturbances (TID's). The gravity wave
mechanism satisfied some important characteristics of the observations:
upward propagation of the wave and the increase of the wave amplitude with
height4.

Gravity waves have frequencies in the range: f << © << N, where f is the
/ Coriolis paramcter, f = 2Qsin¢ = L1 x 10-4 s~! for the latitude of the data (57° N)

g to be used in this study, and N is the Brunt-Viisilli frequency, defined as

(2.2)

’ where g is the acccleration due to gravity and 9 is the mean potential
temperaturc. This frequency is cquivalent to a period of ~ 5 minutes in the
mesosphere (Andrews et al., 1987).

There are many mechanisms which lead to the saturation and
dissipation of atmospheric gravity waves. The primary mechanisms are
thought to be dynamic and convective instabilitics although there are
competing mechanisms. Other mechanisms which limit wave growth are wave
dissipation by turbulence, molecular diffusion, radiative damping, inertial
instability, wave transience and the cascade of wave energy to small scales via

nonlinear wave-wave interaction (Fritts and Rastogi, 1985). Fritts and Rastogi

4 Conscrvation of cnergy requires the amplitude of upward propagaling waves
to grow at a rate proportional to [ p(z)]-1/2. In the atmosphere, density
decreases approximately exponentially with hcight, i.e. at a rate proportional
to e-2/H, where H is the atmospheric scale height. Thus, upward propagating

~ waves grow al a rate of approximately e2/2H,
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(1985) note that wave-wave interaction is the most efficient of these
mechanisms.

In the turbulence theory of gravity wave saturation, the wave
amplitude is limited by the turbulent eddy diffusivity which originates from
the convective instability of the wave itself, with convective overturning
hypothesized not to occur. Walterscheid and Schubert (1990) object to this
theory of gravity wave saturation on two points. First, their model, which
contains no assumptions about the eddy diffusivity, shows that overturning
does indeed occur. The upward propagating wave is not limited to neutral
stability, but instead develops highly unstable regions over certain phases of
the wave. The overturning causes localized convection which restores neutral
stability. Second, the turbulence generated by the breakdown of the wave does
not act to limit growth of the wave, but is a consequence of the nonlinear
overturning. As Walterscheid and Schubert (1990) point out, overturning and
wave saturation can occur even in the absence of turbulence. Upward
propagating waves overturn when the lapse rate of the mean potential

temperature plus wave potential temperature becomes unstable, i.e.,

8(6+6')

35 <O.

(2.3)

The unstable lapse rate is equivalent to the condition where the wave plus the

mean horizontal velocity exceeds the phase speed of the wave, i. e.,

(2.4)

Rearranging this expression yields a measurc of the degree of nonlinearity of

the wave, i.e.,
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(2.5)

when overturning occurs. Thus, gravity waves are highly nonlinear when
saturation takes place.

Dynamical or shear instability occurs when the wave amplitude
becomes large enough that the wave plus the mean velocity has a Richardson®
(Ri) number less than 1/4. Fritts (1982) showed that regions of dynamic and
convective instability are essentially the same, but that convective instability
should occur first and preempt shear instability, Walterscheid and Schubert
(1990) show that convective instability does occur first and preempts shear
instability by limiting the growth of the wave amplitude with height.
However, Chimonas (1986) showed that waves can by dynamically unstable for
any Richardson number if the flow is tilted. The previous studies have all
assumed that the flow is horizontally stratified.

Transient effects occur when wave breakdown modifies the mean flow
and can cause self acceleration of the wave. This can then lower the height at
which the wave breaks. Walterscheid and Schubert (1990) believe wave
transience introduces important considerations in the wave breaking process

but that it is not the principle mechanism behind gravity wave saturation.

5 The Richardson number is defined as:

@ |

g6
a az - N2

8
{av/az] : {av/az] 2,

where V is the velocity and the other variables retain their previous
definitions.

Ri=

22
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2.3.1 Conventional Saturation Theory

\ The term gravity wave saturation refers to any process that acts to limit
L or maintain constant wave amplitudes with altitude. The process occurs via
instabilities or interactions arising from large amplitude wave motions.
Gravity wave saturation plays an important role in maintaining the
mesospheric circulation and temperature gradient; gravity wave saturation
provides the drag necessary to explain the mean zonal wind reversals
observed in the upper mesosphere and lower thermosphere (see for example,
/ Fritts, 1984; Holton, 1982, 1983; Dunkerton 1982; Lindzen, 1981).

Here, we provide a brief review of linear saturation theory as proposed
1 by Lindzen (1981). Linear satwvation theory assumes that the growth of the
amplitude of monochromatic gravity waves in a horizomally stratified flow
would be limited by the appearance of convective instability. This would result
in the production of turbulence and a level of eddy diffusion that is just
sufficient to restrain v.ave amplitudes to the unsaturated limit. This theory
assumes that the gravity wave saturation does not affect wave propagation or
V the wave characteristics.

The basic equations in Cartesian coordinates for an inviscid atmosphere

are:

dv 0 F=
pgtVp-pPE=0

dp poN?
E[—- g W—O

Viv=0

(2.6)

where p is the atmospheric density, V is the vector velocity, w the vertical
component of the velocity, g the acceleration due to gravity, p is the pressure
and N2 is the Brumi-Viisilli frequency. The equations in 2.6 are Euler's

equation, a modified form of the thermodynamic equation and the continuity
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equation, rcspectively. The Boussinesq approximation is implicit in this set of
equations, i.e., the atmosphere will be considered as an incompressible fluid
except in the buoyancy term. This approximation is not especially valid for the
atmosphere as a whole, but may be valid for the region near the level of
gravity wave saturation.

Let us apply the following perturbations to an incompressible, inviscid
and adiabatic atmosphere. The background is assumed to be hydrostatic with a

zonal wind that varies with height, i.e.,

u=ug(z) +u(x,z,t)
w = w(X,z,)

p=po(2) +p(x,21)
p=po(@) +p'(x,2,1)

(2.7)

where the primes indicate the perturbation quantities, ug is the basiz state
zonal wind, and pg, pp arc the basic state density and pressure. The basic state

pressure and density vary with height as

Polz)=po(0) e /M
po(z) = po(0)e™H
(2.8)

where pp(0) and pg(0) are the pressure and density at the surface and H is the
scale height of the atmosphcre.
Applying the perturbations (2.7) to the set of equations in (2.6) and

neglecting second and higher order terms yields the set of perturbation

equations
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v v’ dug _ dp'
Po 5 ¥ POl POV T = 5

ow' ow _ dp
P0'§t—+0000&"— 32 Pg

) ) 2
%, P

+ =
5 U0k g W =0
ou , ow'
— — = 0
ox 0z
(2.9)
We can solve for w' first by assuming solutions of the form
L{:ﬁ(z)el((ﬂl-k)()
w' = W(z) ei( (.l)(-kX)
p' = ﬁ(z) el( wt - kX)
p'= 6(7-) eil wt-kx)
(2.10)

and by substituting these into the perturbation cquations (2.9). Cancelling out

the exponential terms yields the set of perturbation equations:

ipd - kugJ8 + po%?w - ikp

ipolw- kug]w = - QRG‘V -Bg

oz
oo OW
ki+— =0
1KU az
: ~ poN2 _
ifow-kuop __P_og_w =0
(2.11)
Solving this for w yields the Taylor-Goldstein equation (Fritts, 1984):
23 2
0w . N2 ) 1 auo_kz_ ] dup ] G20
022 |(w-kug)? (@-kuo) oz2 H(w-kug) 9z 442
(2.12)
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Lindzen (1981) notes that for cases of gravity wave saturation, we can assume
that

1 e N2
4H? (w-kUg)?
(2.13)

g SaR ekl Sed iy 6 o] WIS P e AR W e n T

which allows us to drop the last term on the left hand side of equation 2,12, The
92uo/922 and dug/dz terms can also be dropped because the basic state zonal
wind is assumed to be a slowly varying function of height. Scaling arguments

also allow us to neglect the k2 term. This reduces equation 2.10 to

92w . [ N2 k2 }W=O
dz? (@-kup)?
(2.14)

Near the critical level, thc denominator, (®-kug), goes to zero because the
absolute value of the horizontal component of the phase speed (w/k)
approaches the background zonal wind speed. This zcro creates a singularity at
the critical level, making solution of cquation 2.14 difficult.

The WKBIJ approximation is used to solve an equation of the form of 2.14.

The WKBJ method is described as follows (Mathews and Walker, 1970). Given an

equation of the form

9%y -
5;(7 + f(X)y =0 P -
(2.15)

where f(x) is a slowly varying function of x and does not pass through a zero

or other singularity, then solutions to equation 2.15 are of the form
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y(x)z 1 ‘ [c+elef(x)dx +c.e-1j?f(x)dx]
[0} e
(2.16)
If we define the following quantity,
7»25-——-———N2
(m-kUd%
(2.17)
then the solution to cquation 2.15 becomes
~ -1 i 7
W=AL /Zle Adz
(2.18)
and is depicted in Figure 2.1.
Lindzcn (1981) uses this result to show that the condition for the
convective saturation of gravity waves is
lsll‘_' =T
dz ,
(2.19)

where T  is the perturbation temperature and T is the dry adiabatic lapse rate.

Other commonly used conditions for convective gravity wave saturation are:

|Po + P.‘ =0,
(2.20)
| Pot p'l =0
(2.21)
27
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=0

dz

(2.22)

and |uo+u|=0,
(2.23)

Saturation conditions in 2.20 and 2.21 occur because you can not have negative
pressures or densities. Condition 2.22 is the same as 2.19; it is the condition for
ordinary convective instability. The last condition, 2.23, relates to the phase
speed of the wave "catching” up to the basic state wind speed.

The gravity wave saturation model of Wilterscheid and Schubert (1990)
provides some interesting insights into the mechanism behind gravity wave
saturation. Two dimensional and fully nonlinear, the model makes no
significant assumptions about the gravity wave saturation mechanism; the
atmosphere in the model is compressible and non-hydrostatic. Most
importantly, thec model indicates that nonlinear growth of the gravity wave
creates rcgions of overturning prior to saturation. The large unstable
potential tcmperature gradients allow the development of small scale cellular
convection which causes the brcakdown of the gravity wave. Turbulence is an
end product of the wave brcakdown via the decay of the cellular convection
rather than the cause of the wave breakdown. Walterscheid and Schubert
(1990) cite the laboratory work of Delisi and Corcos (1973) as support for this

conclusion from their modecl.

2.3.2 Slantwise Static Instability Theory

Hincs (1988) objects to the linear saturation mechanism proposed by
Lindzen (1981) on two points: the spectrum of waves and the vertical
gradients. In raising these objections, Hines suggests that slantwise static
instability is a less demanding mechanism for gravity wave breaking.

Waves in the middie atmosphere are not represented by a single

dominant wave number but instead by a spectrum of wave numbers. Hines
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(1988) notcs that this does not affect thé linear saturation theory of wave
breaking pér se, but it "does open the way to patchiness rather than a laminar
deposition of turbulence"S. The instability criterion for a single wave mode,
i.e., where the phase speed of the perturbation equals that of the background
flow, does not impose nonlinearity on the system. It would impose large
nonlinearitics when two waves have similar amplitudes but different wave
vectors. Hines (1988) states that thé nonlinear interaction may leach away
wave energy before the wave becomes unstable,

Hines (1988) also objects to the conventional saturation theory because
it assumes the background flow is strictly horizontally stratified and only
considers vertical gradients in the evaluation of the stability. Hines notes that
this restriction is more mathematical in nature but is not justified physically.
Hines (1988) examines the stability criteria for gradients which are no longer
strictly vertical.

Hincs (1988) notes that the criterion for the onset of instability in a

horizontally stratificd atmosphere is given by

1;23

"
@ Ilog
¥l

(2.24)

where g is the acccleration due to gravity, 6 is the mean potential temperature.

This is the negative of the Brumi-Viisilli frequency wp2 (defined as N2 in the

previous scction) and as such would appear in the form

eimb(

(2.25)

6 Hines (1988), p1269.
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in the solution of the relevant linearized equations. If equation 2.25 were

negative, i.c., unstable conditions, then the solutions would take the form

e‘/t.

(2.26)

where 1, is the e-folding time for the growth of any instabilities. This

mechanism will be referred to hercafter as vertical static instability. If the
atmosphere is not horizontally stratified, i.c., the gradient of the potential
temperature is no longer constrained to the vertical, thc new criterion for

instability is given by

152

cos{>0

&

g
9 ’

(2.27)

where { is the angle off the vertical for any parcel motion orieated along the s
axis as shown in Figure 2.2. Any parcel motion confined to the shaded region
in the figure would be unstabiec. By analogy, the c-folding time for growth of

an instability for this type of stratified atmosphere would be given by

s

(2.28)

The e-folding time for growth of the instability may be long for certain values
of {.

Hincs (1988) concludes that turbulence is far more likely to develop
from slantwise static instability than for vertical static instability, even
though it may be a slower mechanism. Since gravity waves produce potential

temperature gradients that are not necessarily constrained to the vertical

~
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plane, this mode of instability is the more likely to generate turbulence. Under
most conditions, the normalized wave amplitude necessary for the

dévelopment of turbulence from slantwise static instability is <<I; the
normalized wave amplitude necessary for the development of turbulence for
vertical static instability is defined as 1.

Hines also concludes that the turbulence spectrum from slantwise static
instability would be highly anisotropic, with much stronger horizontal
motions than vertical motions. This might approach two dimensional
turbulence in the limit, The production of turbulence from slantwise static
instability is more likely for "short" vertical wavelengths than from vertical
static instability. Hines (1988) notes that for vertical wavelengths of 6 km and
a buoyancy period of 5 minutes, vertical static instability requires vertical
velocities of 20 m s-! for saturation to occur. This is not consistent with
observations. However, because slantwise static instability requires much
smaller wave amplitudes for saturation, this mechanism can produce
saturation consistent with observations of vertical wind velocities in the
mesosphere.

The one difficulty with finding a strange attractor associated with the
slantwise static instability mechanism is that the smaller wave amplitudes
which produce saturation and turbulence may allow the gravity wave to
remain fairly linear. The analysis by Hines (1988) was done for a
monochromatic wave to simplify thc mathematics and is limited by this
assumption. Nonlinear wave-wave interaction will affect both saturation
mechanisms equally. Without nonlinear wave-wave interaction, the slantwise
static instability mechanism reduces the probability of finding an attractor in
the saturation of gravity waves. Howcver, the "patchiness" of the turbulence
created by saturation of gravity waves with a spectrum of wave numbers

opens the way for the investigation of the fractal structure of turbulence.
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2.3.3 Nonlineaf. Mechanisms

There are three “resonant triad" interactions which act on gravity
waves: elastic scattering, induced diffusion and parametric subharmonic
instability (Fritts and Rastogi, 1985). Of these mechanisms, Fritts and Rastogi
feel paramectric subharmonic instability acts most efficiently in transferring
wave energy betweén waves of very different scales. Parametric subharmonic
instability transfers enérgy from large scale waves to two small scale waves at
half the frequency of the larger wave. Elastic scattering converts the incident
wave into a reflected wave by scattering off a vertical shear in the wind and
tends to make the vertical wave spectrum symmetric. Elastic scattering can be
rapid, depending on the vertical wave number (Ych and Liu, 1985). In induced
diffusion, the wave action density diffuses in wave space if two waves with
nearly identical wave vectors interact with the vertical shear of a smaller
wave. Ibrahim (1987) suggests that induced diffusion can be sufficient for
gravity wave saturation.

Fritts and Rastogi (1985) note that parametric subharmonic instability
acts on waves of all amplitudes and may exchangc energy among waves at
amplitudes less than that required for convective or dynamic instability.
However, it works best at high vertical wave numbers and small intrinsic
frequencies. Fritts and Rastogi do not believe that parametric subharmonic
instability competes effectively with convective or dynamic instability among
higher frequency, larger scale gravity wave motions as a mechanism
explaining gravity wave saturation.

Parametric subharmonic instability transfers the energy in moderate-
to-large scale waves to small scale waves at onc half the frequency. Yeh and
Liu (1985) note that conservation of wave number and conservation of
frequency restrict this mechanisin fo those waves with an elevation angle of
60° or greater. The time scale for parametric subharmonic instability varies

with the inverse square of the vertical wavenumber.
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Yeh and Liu (1985) state that if wave growth occurs over an amount of
time equal to a féw periods or less, the nonlinear interactions are no longer
instability, may become important, Furthermore, the interactions in their
study only considered the energy transferred in the vertical plane and
neglected cnergy transferred in the horizontal plane.

Nonlinear wave-wave interaction can act to limit the growth of gravity
waves by transfering energy from larger amplitude waves to smaller waves.
This mechanism will not necessarily lcad to gravity wave breaking. There may
be no transition from a laminar state to a turbulent one and therefore no
potential strange attractor in the flow. There may be a strange attractor
associated with nonlinear wave-wave interaction, but it may be a function of
the underlying spectrum of waves instcad of a function of the transition from
laminar to turbulent flow. The latter is more likely to be a universal and
repeatable behavior, whereas the former will only describe a particular

packet of gravity waves and may not be found again.
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Figure 2.1 Nonvertical orientation for the potential tempeiaiure gradient.
Interchanges of air parcels along axes within the shaded regions
¢ such as the s axis are unstable (adapted from Hines, 1988).
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CHAPTER 1IlI

THE METHODS OF ANALYSIS

This chapter describes the methods that will be used to analyze the data.
The bulk of the chapter is devoted to a description and derivation of the
Grassberger-Procaccia correlation integral algorithm, since this technique is
not commonly used on meteorological data. A discussion of the strengths,
weaknesses and difficulties that arise in employing this algorithm follows the
derivation. The remainder of the chapter provides a brief overview of the
more conventional analysis tools (autocorrelation and power spectrum) that

will be used to support the analysis of the system dimension.

3.1 The Grassberger-Procagcia Correlation  Integral Algorithm

Therc arc a number of techniques described in the literature for
estimating the dimension of a strange attractor. Box counting algorithms yield
an estimatc of the capacity dimension, commonly referred to as the fractal
dimension (see, for example, Licbovitch and Tibor, 1989). The nearest
neighbor method developed by Badii and Politi (1987) is another approach to
estimating the dimension of a system. Yet another dimension estimate can be
obtained from singular systems analysis (sec Broomhead and King, 1986;
Albano et al., 1988; Vautard and Ghil, 1989). The spectrum of Lyapunov (or
characteristic) exponcnts for an attractor can be calculated and related to the
dimension of the system (see Packard et al., 1980; Froehling et al., 1981; Roux et

al., 1983; Wolf et al., 1985). However, the most frequently used method to
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calculate the dimension of a system is the correlation integral algorithm
(Grassberger and Procaccia, 1983; Grassberger and Procaccia, 1984),

Each technique has its strengths and weaknesses. The box counting
technique is computationally intensive although Liebovitch and Tibor (1989)
developed a faster and more efficient algorithm. The singular systems
approach is difficult to implement although it is often used as a check on the
other methods (Broomhead and King, 1986; Albano et al., 1988; Vautard and
Ghil, 1989). The ncarest neighbor approach is relatively new and has not been
widely used; its strengths and weaknesses have yet to be thoroughly examined
in the litcrature. Calculating the spectrum of Lyapunov exponents often
presupnoses some knowledge of the attractor. The Grassberger-Procaccia
algorithm has the advantage of being casily implemented and calculated.
Because of its frequent use, the limitations of the Grassberger-Procaccia
algorithm have been widely investigated and described in the literature.

The Grassberger-Procaccia algorithm (along with subsequently
developed variations) will be used in this study. It is easy to understand and
program. It makes no assumptions about the presence of a strange attractor in
the signal and requires no a priori knowledge of its nature or structure.
Somewhat computationally intensive (the computer time increases as the
square of the number of points in the data set), the Grassberger-Procaccia
algorithm is less demanding than the box counting algorithm. Despite these
advantages, this algorithm has several drawbacks which will be discussed in
detail later in the chapter.

Before deriving the Grassberger-Procaccia algorithm and discussing
some of its advantages and disadvantages, let us dcfine the different concepts
of dimension and the method for building a phase space portrait from a single

data set.
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L 3.1.1 Concepts of Dimension

1 Three different dimensions are often used to describe a setl: the
capacity dimension, the Hausdorff dimension and the information dimension.
These are summarized in Table 3.1 (adapted from Farmer et al.,, 1983). The
Hausdorff and capacity dimension are metric dimensions, a concept of
dimension on which a sense of distance is defined. The information dimension
is a probabilistic dimension based on the natural measure - the relative
probability of different regions of the attractor as obtained from time

./ averages (Farmer et al., 1983).

Table 3.1 Dimension_definitions.
Name Symbol Generic _name
Capacity dimension d¢ fractal
d Hausdorff dimension dp
Information _dimension dj
; The capacity dimension is defined as

d.= lim log N(¢)

0 log( 1/¢) 3
1)

where N(e) is the number of cubes with sides of length & needed to cover the
set of points (Bamsley, 1988). This definition of dimension is the basis of the
{ box counting algorithm.
The Hausdorff dimension is more complicated than the capacity
dimension. Its definition is similar to that of the capacity dimension but the

cubes used to cover the set can be of variable length. We will not give a more

1 A set can be a collection of points, a seometric object or a time series of data.
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precise definition but note instead that for most attractors the Hausdorff
dimension is equal to the capacity dimension (Farmer et al., 1983).

The information dimension is a generalization of the capacity
dimension; it takes into account the relative probability of the cubes used to

cover the sct. It is defined as

di= lim _Ne)
£—0 log( 1/8)
(3.2)
where I(e) is the information for length scale € defined as
N(e)
I(e)=- Y, pilogp;
i=1
(3.3)

and pj is the probability that the attractor trajectory visits the ith cube. If all
the cubes are visited with equal frequency then the probability that the ith

cube is visited is given by

Pi=-—L—
N(e)
(3.4)
and therefore the information can be written as
I(e) =log N(e)
(3.5)

Thus, the capacity dimension is equal to the information dimension for a
completely homogencous atiractor. In general, attractors are not
homogencous and the cubes are not visited with equal frequency. Thus, for an
inhomogencous attractor,
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I(€) < log N(g)
(3.6)

and consequently the capacity dimension is always greater or equal to the

information dimension, i.e.,

dc2dp
(3.7

Information theory gives a very specific meaning to I(e). It is the
amount of information necessary to specify a system to within accuracy € (¢ >
0). Alternately, it can be thought of as thc amount of information obtained by

making a new measurement with an uncertainty e.

Z.1.2 Building Phase Space Veciors

Originally, there was no universally accepted method for constructing
phase space vectors from a time series. Packard et al.,, (1980) pointed out,
"..there is no universally applicable mecthod of phasc space construction,
though the natwme of the phenomenon might suggest possible alternatives."2
However, Brandstiter et al.,, (1983) suggested that phase space portraits can be
constructed by lagging the original time series by an arbitrary amount to
obtain the second phase spacc dimension. This technique of constructing a
phase spacc rcpresentation of the data is often referred to as Taken's method of
delays and is now almost universally used.

Fraser and Swinney (1986) provide a clear explanation of building a
multi-dimensional phasc portrait from a single time series. A scalar time series
s(1) can be expanded into a m dimensional phase space vector x(t) by using

time delays 1, as follows

2 Packard et al. (1980), p713.
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x (t)={xo(t), x1(t)h w.. Xm2(1)},
(3.8)

where

xn(t)=s{t+n1); n=0,1,2, ..., m-1

Here s is the original time series, Tt the specified time lag and xg, xt, ..., xm-1 are
the individual components of an m dimensional phase space vector x. Fraser
and Swinncy (1986) note that for an infinite amount of noise free data, the
time delay 1 can be arbitrary. However, for noisy or limited data, a small time
delay t may make the components xg(t)and x)(t) indistinguishable and all
trajectories appear to be on a line xp=x1. To avoid this problem, the time delay 7
must be chosen to make the vectors xo(t)and x;(t) as independent as possible.
Techniques in determining the proper choice for the time delay will be

discussed in later sections.

3.1.3 Trajectories in Phase Space

The trajectory in phase space is said to follow an attractor if its orbits
rapidly return to this subset (i.e. the attractor) after finite perturbations
(Swinney, 1983). Large perturbations could send the orbit out of the basin of
attraction. An attractor is labelled strange if ncarby orbits diverge
exponentially on average. This condition is sometimes referred to as "sensitive

dependence on initial conditions" (Swinney, 1983).

3.1.4 Derivation of the Grassberger—-Procaccia_ Algorithm

Grassberger and Procaccia (1984) note that "two of the most basic

properties of dissipative chaotic systems are related to information: the
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Kolmogorov (or 'metric') entropy K and the Renyi-Balatoni information
dimension o©."3 Both K and o relate to the information I(e, T) gained by
observing the trajectory of a system with precision € during a finite amount of
time T. Grassberger and Procaccia (1984) define the precision e as the
uncertainty in the measurements of any of the coordinates of the vector x.

The Kolmogorov entropy is defined as

K= lm lLm I&D
e 0T 5

3.9)

The definition of the Kolmogorov entropy rcquires making a very long
series of obscrvations as can be sten from the limit placed on time.
Grassberger and Procaccia (1984) show that since the time limit is taken first,
equation 3.9 implies that the information for a given precision € increases
linearly with time and that the rate of increase tends towards a finite constant
for infinite precision (i.e., infinitely small ecrror).

Furthermore, Grassberger and Procaccia (1984) compare this to an

ordered system where

T -—) 00
(3.10)
and systems with random noise where
im Do e - o
T30 £—0
(3.11)

3 Grassberger and Procaccia (1984), p35. Note that ¢ is the same as the
previously defined information dimension di.
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This leaves us with the following definitions for the behavior of the

Kolmogorov entropy:

1. K =0 for ordered systems,
2. K=o for random systems, and
3. K

= a finite constant for systems characterized by a strange attractor.

To cxtend this concept to a time series of data, Grassberger and Procaccia

(1983) introduce a new quantity Kz which has the following properties:

1. K220,

2. Ka2<K,

3. K2 =« for random systems, and
4. K2 # 0 for chaotic systems.

Grassberger and Procaccia (1983) note that K2 > 0 is a sufficient condition for
chaos. The quantity K2 can be calculated in the following manner.
Grassberger and Procaccia (1983) define a new quantity, C(e), which is total
probability that a random pair of points on the attractor will fall into the same
cube of sizc € in phase space. Grassberger and Procaccia (1984) note that this

probability scales as

Y

C(e) gV

£—0
(3.12)

where v is called the correlation exponent. Furthermore, v also approximates

the fractal dimension, dc, of the attractor (Grassberger and Procaccia, 1983).
For a time series of data {ilwﬂ ,where i(’i =X (t=1iT), the correlation

integral, Cmp(g), can be calculated from the following (Grassberger and

Procaccia, 1983):
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Cn(g)= lim —é—z-x{numberofpaimofpoints (n,k)wimlfn-ik|Se}
N—oo

(3.13)

Here N is the total number of points in the time series and the time delay =
equals AAt for some lag A. The subscript m is the embedding dimension and
must be greater than or equal to F, the number of degrees of freedom of the
attractor. The Whitney embedding theorem states that it is possible to embed an
m dimensional geometric object arbitrarily in a 2m+1 dimensional space.
Equation 3.13 may be rewritten more precisely by replacing the norm
with an explicit expression for the Euclidean norm in a m dimensional phase

space:

m-1 1/2
Cn(e)= lim _1_2x’numberofpairs(n,l:)with[ 2 an+;-Xk+i|2J Se}
N—oo N \l i=0 )
(3.14)
This should be the samec as (Grassberger and Procaccia, 1983)
Cnle) = €'exp(-mtKj)
m —)oo
£-—0
(3.15)

This now gives us a simple way to calculate the fractal dimension as well
as estimating the lower bound on the Kolmogorov entropy. If we plot the
natural logarithm of Cp(e) as a function of the natural logarithm of € for
increasing values of embedding dimension m. we should get a series of
straight lincs whose slope is v, the fractal dimension of the attractor and

which are displaced from one another by the factor -mtK2. An example of the
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correlation integral is shown in Figure 3.1. Calculating a value for K will
quickly tell us whether the data is ordered, chaotic or random.

In practice, the region of constant slope will only be valid over a limited
range of ¢ which is often called the "scaling" region. This gives equation 3.15

the form

(3.16)

where x(e) is a possibly oscillatory function of O(1) (Smith, 1988). The structure
of x(e) is generated by the sparse or empty regions (lacunae) of the set. Some
of the oscillations in x(g) are also gencrated from noise and fluctuations due to
a finite number of points.

The Kolmogorov entropy of the attractor can be approximated by

examining the f{ollowing

Ko,m(€)= 2 1n [—9" © }

Cm+1(€)
(3.17)
and then
lim Kym(e)=Ks
m—oeo
g0
(3.18)

The Kolmogorov entropy, along with the corrclation dimension, can be used to
test for strange attractors in a set of data. An example of using the
Grassberger-Procaccia approximation of the Kolmogorov entropy to determine
the type of behavior of a system is shown in Figure 3.2.

Grassberger and Procaccia (1983) demonstrated this technique on the

Mackey-Glass delay differential equation and th¢ Henon attractor and found
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that this technique works for fractal dimensions as large as 7.5 with ~ 30000
data points. Howcver, later research with the correlation integral suggests
that its only practical for determining the dimension of systems with

dimensions on the order of 4 or less (Smith, 1988).

3.1.5 Generalized Correlation Integral

The technique developed by Grassberger and Procaccia (1983; 1984) has
been extended to determine the generalized cntropy and generalized
dimension (Hentschel et al., 1983; Pawelzik and Schuster, 1987; Grassberger,
1985). Such generalized quantities reveal important information on the
structure of the attractor.

Atmanspacher ct al., (1988) notes that the quantity for characterizing
an attractor as a mectric structure is its dimcension. Traditionally, the concept of
dimension has bcen limited to purely integer values. However, the dimension
can take on non-integer values for chaotic (or strange) attractors. Attractors
with purely intcger dimensions correspond to regular (i.e. stationary, and/or
periodic) processes. The concept of a fractal (i.e. non-integer) dimension,
d<m, of an attractor in a m dimension phase space can be derived from
information theory. The information dimension, dj, describes how information
I(e) scales with varying spatial resolution € as previously defined in equation
3.2.

Onc way to obtain the information I is to break the attractor up into m
boxes of size €. The probability that a point on the attractor falls into the ith

box is given by

z|Z

pi=
(3.19)
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where Nj is the number of points in the ith box and N is the total number of
points on the attractor.
Pawclzik and Schuster (1987) define the generalized information of

order q as

m
I(q)z_l__logz p?
l-9 73
(3.20)
A continuous spectrum of dimensions of order q can be dcfined by substituting

1@ into the original definition of the information dimension (equation 3.2),

m
log 2, pf
d(®= fjm L=l

€ —0 1-q log(-l:-)

m
log Y, p?
=1 i=1
q-1 log(g)

(3.21)

Some of the most frequently encountered dimensions are: d(0), the Hausdorff
dimension (previously referred to as dp ); d(1), the information dimension
(previously referred to as dj); and d(2), the correlation dimension
(Atmanspacher et al., 1988). Furthermore, Atmanspacher et al. (1988) observe

that
d@<d@) ifg'<q
(3.22)

The equality holds only for completely homogeneous probability distributions,

i.e., pi =1/N. The morc an attractor “bunches” up (i.c. spends more time
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visiting a particular region of phase space), the less homogeneous the
probability distribution. Differences arise between dimensions of different
order q because of the degree of inhomogeneity of the attractor, i.e., the
degree to which the boxes are visited with unequal frequency.

The correlation integral method proposed by Grassberger and Procaccia
(1983) is based on the correlation dimension v. This has been extended to a

dimension of arbitrary order q as follows

N N q-17]-1-
Cta)(g, N)= lim [—é—lz [—I}f jzl H[E-lii-fjl]] }Q-l

e—30 =1

(3.23)

where H is the Heaviside step function (H(x)=0 if x<0, H(x) = 1 if x20), and ¢ is
the size of the box (Hentschel et al.,, 1983; Pawelzik and Schuster, 1987;
Grassberger, 1985). Notice that this reduces to the original expression of
Grassberger and Procaccia (1983) for order q=2. By analogy, the generalized

entropy of order ¢ may now be wrilten as

K(4) = lim fim {=L1nC(a)(g, N))
e—=0n—e

(3.24)

These results can be used for a series of single observations evenly spaced in
time by usc of Taken's method of delays. This lets us write the generalized

correlation integral as

-

r ;‘lr A r ~

! 1 m-i —"L-‘
(e, N)=Im |1 Y |1 ZH{E Y (xisk-xj4x) 2|2
m Ni N.l 1 k=0

£—0 1 =

Te-i1

(3.25)
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Pawelzik and Schuster (1987) point out that this technique is only
J slightly more computationally intensive than the original correlation
algorithm proposed by Grassberger and Procaccia (1983). Most of the
' computational effort is spent in counting the number of the pairs of points;
raising thc interior sums to the various powers represents only a small
additional burden.
Once a spectrum of generalized entropies have been generated for a
time series, we can determine the spectrum of dynamical fluctuations around
/ the Kolmogorov entropy. This spectrum can be used to deduce properties and
structure of the attractor (Atmanspacher et al., 1988) or applied to a

' description of turbulence (Chhabra et al., 1989; Meneveau and Nelkin, 1989).

3.2 Limitations of the Grassberger-Procaccia Algorithm

The Grassberger-Procaccia algorithm does have a number of
r weaknesses which must be addressed. First, noisc in the signal can yield
misleading cstimates of the dimension. Second, an inappropriate choice of the
time dclay in constructing the phase space vectors can also yield incorrect
estimates of the aitractor dimension and may suggest the presence of a chaotic
attractor where there is not one. Furthermore, a limited or non-stationary data
set can introduce errors and rcquire the use of different norms in calculating

‘ the distanccs between pairs of points.

. 3.2.1 Nois¢

ad Noise affects length scales over a range on the order of magnitude of
¢ the standard deviation of the noise (Ben-Mizrachi et al., 1984). This leads to a
noise length scale region where noise scales as the embedding dimension
(Ben-Mizrachi ct al., 1984; Theiler, 1987; Franaszek, 1987). Thus, noise is
proportional to €™ and has a slope on the In C(g,N) vs In ¢ plots that equals m,
the embedding dimension. The presence of noise reduces the scaling region of

other signals; in systems with a low signal to noise ratio, the scaling region
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may even disappear. The magnitude or amount of noise in the signal can be
determined from the break in the slopes in the In-In plots of the correlation
integral; this break is often referred to as a "knee". The presence of noise in
the signal violates the limit in equation 3.12; you can not take the limit as &

goes to zero because the attractor is not clearly defined for length scales on
the order of the magnitude of the noise.

Furthermore, a limited number of data points has much the same effect
as noise on the slopes from the correlation integral. This occurs because
random noise never completely saturates an infinite dimensional phase space;
a limited data set may not cover the attractor well enough to allow it to be
sufficiently embedded in a 2d+1 phase space.

Certain types of noise make it possible to mistake a data set with a finite
correlation dimension as having an attractor. Certain sets of stochastic data
can yield finite corrclation dimensions yet arc not strange attractors. For
instance, thc “random walk” yiclds a correlation dimension of 1.1 (Ramsey and
Yuan, 1989). Even morc disconcerting (especially to those meteorologists who
live and dic by the -5/3 power law) is that “colored” random noise
characterized by a power law spectrum can yicld a finite correlation
dimension (Osborne and Provenzale, 1989). White noise which has a flat power
spectrum docs yicld an infinite correlation dimension as indicated originally
by Grassberger and Procaccia (1983, 1984). Osborne and Provenzale (1989)
showed that white noise gives infinitec correlation dimensions because the

random noise acts as a fractal path in phase space, leading to self similarity.

3.2.2 Filtering and Digitizing Errors

Filtering and digitizing the data can yield inaccurate estimates of the
dimension of an attractor. Filtering leads to inaccuratc dimcnsion estimaies in
much the same manner as noise. Data is often filtered to reduce the amount of
noise in a signal, but doing so can lead to an overestimate of the dimension of

an attractor (Badii et al.,, 1988). On the other hand, digitizing the signal creates
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errors which underestimate the dimension; in this regard it acts in an opposite
N manner to noise (Méoller et al.,, 1987). Random noise combined with errors

i introduced during digitizing can create a "false" scaling region which could in
( turn suggest the presence of an attractor where there was none.

Mélier et al., (1987) suggest that adding Gaussian noise with a standard
deviation equal to 0.4 times the least significant bit before digitizing reduces
the error in the dimension estimate in signals where most of the error is
attributed to digitizing. For signals primarily distorted by noise, adding
Gaussian noisc with a standard deviation on the order of the least significant

/.. bit provides the best improvement in the dimension estimate. Tests run by
. Méller et al., (1987) for both cases show the error in the dimension estimate

can be reduced by a factor up to 80%.
3.2.3 Number of Poinis

. A limited data series (i.e. limited in the total number of points or amount

, of the attractor that is covered) leads to a downward bias in the dimension of
random variables and an upward bias in the the estimate of a dimension of an
attractor (Ramsey and Yuan, 1989), Small data sei. also lead to conditions where

the corrclation integral does not saturate at increasing embedding dimension.

Ramsey and Yuan (1989) suggest a method of non-linear curve fitting that will
allow onc to test for the presence of an attractor in a limited data set.
! Obviously, there must be some minimum number of points for which
. the Grassberger-Procaccia algorithm will yield accurate estimates of the
'. attractor dimension. The most commonly quoted limits on the number of points
L to adequately implement this algorithm is
: 104 - 10042
(3.26)
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where dy is the correlation dimension (see, for example, Henderson and Wells,
1988).

Smith (1989) provides a more rigorous and detailed formulation of the
minimum number of points needed to obtain an accurate dimension estimate,
Smith gives the number of points necessary to estimate the correlation

dimension of a non-lacunar set to within 5% of its true dimension as

Nmn2 42M
(3.27)

where M is the grecatest integer less than the dimension. For example, the
value of M would be 2 for an attractor with a dimension of 2.3.

Abraham ct al. (1988) showed promising results in examining the
dimensions of small data sets contaminated by noise. They were able to obtain
the dimension of the Henon attractor for data scts with as few as 500 points.
Note that this fits Smith's minimum criteria; the dimension of the Henon
attractor is 1.24 - hence the minimum number of points nceded to estimate its
dimension could be as low as 42! While it was difficult to accurately determine
the dimension from small data sets, Abraham et al. (1988) still felt it was

possible to distinguich between chaotic, periodic and random behavior.

3.2.4 Time Dclay

A single time scries may not properly fill out phase space if the wrong
time delay for the embedding dimension is chosen. Often, the time to the first
zero in the autocorrclation is chosen as the delay time in constructing the
higher dimension vectors from the time series. Fraser and Swinney (1986)
points out this practice as being “naive”; it may grossly underestimate the
correlation dimension of the attractor in the data. Too small a time delay in the
case of highly autocorrelated data may yield pairs of points that lie close

together because they are closely related in time rather than their lying
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"accidentally” close together because they are on the attractor. Highly
autocorrelated data restricts the trajectories of a signal from "filling" out
phase space, thus restricting the information that may be gained by
examining the distances between them. Figure 3.3 shows an example of a
function with two choices of time delay, one of which fills the phase space and
one of which does not.

Fraser and Swinney (1986) suggest that a better choice of the proper
time delay can be made on the basis of mutual information theory. The mutual

information, I, is defined as

I= P(X’Y)l°g2[§l()"()z))%5%%‘JdXdY

(3.28)

where X is thc measurcment at time t, Y is the mcasurement at time t+1, P(X,Y)
is joint probability density and P(X) and P(Y) arc the respective X and Y
probability densities. For logarithms taken to basc 2, the units of the mutual
information is in bits. The mutual information measures the relationship
between two signals in a more general manner than the autocorrelation,
which measures the lincar dependence. Normally, the first zero in the
autocorrelation between two data vectors implies that the two are linearly
independent. However, data characterized by a strange attractor are usually
highly nonlinear, thus making the first zero in the autocorrelation a poor
choice for the time delay. For nonlinearly rclated data, Fraser and Swinney
suggest that first local minimum in the mutual information provides the best
choice of time delay in construction of higher dimension data vectors.

However, calculating the mutual information is computationally very
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expensive (Fraser and Swinney, 1986) and often not as enlightening as
repeating thé correlation integral calculations for different time delays4.

Liebart and Schuster (1989) show the first local minimum in the mutual
information is the best choice for timg delay as opposed to some other local
minimum (say the second or third). Their tests show that the first local
minimum in the mutual information helps preserve the small scale structure
of the attractor in the phase space reconstruction. They also point out that this
criterion for the time delay is not “"that the reconstructed orbit in phase space
is closest to the truc one but that the dimensions and entropies from the

reconstructed orbit are close$t to their true values".S

3.2.5 The Norm

Additional error can be introduced by an improper choice of norm used
in the Grassberger—Procaccia method. While all norms arc thcoretically
equivalent, Havstad and Ehlcrs (1989) found differences between the .
dimensions calculated from using the Euclidean norm and the maximum noim.
The Euclidcan norm counts points that fall within spheres while the maximum
norm counts points that fall within cubes. Havstad and Ehlers (1989) found the
maximum norm underestimated the dimension of the Mackey-Glass attractor
whereas the Euclidean norm yielded a value for the dimeasion that was very
close to the true one. They believe that the difference occurs because the
diagonals of the cubes are aligned with the surfaces of the attractor. While the
maximum norm is attractive because it is computationally less intensive, only

the more computaticnally expensive Euclidean norm will be used in this study.

4 Glenn James, personal communication (1989). Glenn James is a fellow AF o
Ph.D. type who just recently graduated from Georgia Tech (Winter quarter,
1990). He also aoted that the mutual information calculations were too much
trouble and "a pain in the ....". _ '
SLiebait and Schuster (1989), p108.
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3.2.6 Non-Stationary Data Sets

Implicit in this analysis is the assumption that the data set is stationary,
an assumption common to most signal analysis. However, Havstad and Ehlers
(1989) have shown the Grassberger-Procaccia method is acceptable (with some
modifications) for data sets that are not stationary. The dimension for small,
non-stationary data sets can be calculated from small overlapping groups with
reasonable accuracy if the dimension is not more than 10 (Havstad and Ehlers,
1989). However, the number of points in each overlapping segment still must
be the minimum number nécessary to implement the correlation integral
algorithm.

Given some of the errors and uncertainties discussed above (small data
sets, noise, a certain degree of autocorrelation, non-stationary data sets), one
of the most difficult problems is defining the scaling region. In many

experimental results, the scaling region is quite small and poorly defined for

limited scts of noisy data. Ellner (1988) has developcd an alternate method of

calculating the generalized dimension of an attractor that improves the
discrimination of the scaling region as well as providing an estimate of the
errors. This tcchnique is based on a maximum likelihood method.
Unfortunately, the maximum likclihocd method is even more computationally
demanding than the Grassberger-Procaccia algorithm.

Ellncr (1988) notes that the maximum likelihood technique offers
several advantages over the gechnique of Grassberger and Procaccia. For small
data sets, the scaling region is better defined and freer of distortions that
occur because of the finite sample effect. This yields a larg.r apparent scaling
region and, in turn, gives a more accurate estimate of the dimension.
Furthermore, the maximum likelihood technique yields a dimension estimate
accompanied by confidence intervals which give the error due to finite ;

sample sizc.
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3.3 Extension of the Grassberger—Procaccia Correlation Integral

Additional research has been done examining the strengths and
weaknesses of this technique. One of the biggest disadvantages of the
technique proposed by Grassberger and Procaccia (1983) is the limits in
equations 3.15 and 3.18. These limits impose a requirement for a lengthy time
series and, as pointed out by Theiler (1986), can lead to spurious dimensions if
the number of data points is too small and the data are too highly
autocorrelated. However, Theiler proposes a modification to the technique of
Grassberger and Procaccia (1983) which improves the convergence of the
integral towards its infinite limit for autocorrelated data.

Theiler redefines the correlation integral of Grassberger and Procaccia
(1983) as:

N N-n
C(e,N) =—272 H(e-|Xj4n - x;])
N®pz1i=1

-

(3.29)

where H(x) is the Heaviside step function, N the total number of points in the
data set and the phase space vector xi is defined as

Xi=(Si, Sitt> Si421 Si-o(m-l)’t) where s; is the original signal at time t and t the
time delay. Theiler notes that for typical conditions (1, m << N) ,there are as
almost as many vectors xj as there are data points sj. The correlation

dimension, v, can be defined by the limit

log C(¢, N) 3

v=lim lim
loge

e—>0 N9
(3.30)

-
F—

or where the derivative exists !
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d[log C(e, N)]

v=lim lim de
£~>0 N oo c_il_qg__e_
de

(3.31)

The limits in the two expressions above provide problems in implementing
this technique in practice.
Theiler (1986) shows that the Grassberger-Procaccia correlation

integral redefined in equation 3.29 can be better served by a more generalized

version

N N-n
C(e,N, W)——Nz-— Y 2 H(€-|X isn - Xil)
=W i=1 .

(3.32)

W is the number of autocorrelated points to exclude from the counting
statistics. Note that W=1 yiclds the original definition of the correlation
integral proposed by Grassberger and Procaccia (1983). Essentially, this
algorithm doesn't count the first W autocorrelated points that lie nearby.
Skipping these points in the summation improves the convergence of the
algorithm in both limiis. Theiler notes that the key to this modification lies in
choosing the right value of W.

Theiler (1986) demonstrated the validity of this modification in
examining uncorrelated and autocorrelated noise. As previously mentioned,
autocorrelation restricts the trajectories of a function from “filling” out phase
space, thus restricting the information that may be gained from examining
the distances between pairs of data points. Highly autocorrelated data may
yicl& pairs of points that lic close together because they are closely related in
time rather than their lying “accidently” close together because they are on

an attractor.
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Noise has a slope on the C(e,N) vs € plots equal to m since noise scales
\ as€™ where m is the embedding dimension (Theiler, 1986). Noise has an effect
similar to that for autocorrelation. Autocorrelation and a limited number of
‘ points may unnecessarily restrict the range over which this slope occurs,
creating a "knee" in the plot of In C(e,N) vs. In € at higher embedding
dimensions. Theiler (1986) shows that the usable range of C(e,N,W), i.e. that

range over which C(e,N,W) is proportional to €™, will be bctween

a. Uncorrelated limit - 2/N2 and 1, and

: b. Autocorrelated limit - 2/N2 and 2/N.

As the number of data points approaches infinity, the autocorrelated range
may approach the uncorrelated limit.
Given this, Theiler suggests a minimum value for W which extends the

. usable range for the slope:

! >1(%)2/m (3.33
.33)

) where 1 is the first zero in the autocorrelation, N the number of data points
and m is the embedding dimension. This is equivalent to dropping the first W
] terms in the summation series in the correlation integral. By dropping the
| first W terms, the summation neglects the points that are nearby because they
‘ are correlated in time and thus approaches its true limit.
- There are two different time scales which must be considered in
{ employing the Grassberger-Procaccia algorithm. The time scale of the first
minimum of the mutual information determines the best lag for the 3
reconstruction of phase space vectors from the original data. The time to the

first zero in the autocorrelation determines the number of autocorrelated data

-~

points to cxclude from the summation in thc correlation integral.

BT
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3.3.1 The Normalization Factor

There is some question about the normalization factor used in the
correlation integrai algorithm and its variations. In the original definition by
Grassberger and Procaccia (1983, 1984), the normalization factor was 1/N2.
However, it was seen that the number of calculations could be halved by only
determining the distances for the upper half of the matrix which held the
pairs of points (i.e., the distance between point i and point j is the same as the
distance between point j and point i -- why repeat the calculation?). The
normalization factor was further modified by Henderson and Wells (1988) to
2/N(N-1) by not calculating ‘the identity (sometimes called "self pair") terms
(i.e., those terms for which i=j). Smith (1988) noted that the "self pair" terms
must be calculated cxplicitly and included in the full double summation. This is
required to distinguish the scaling of true noise from fluctuations due to a
finite number of points N. When the "sclf pair" (i=j) terms are omitted, the

correlation integral is not nececssarily bounded in the limit as & approaches

2€r0.

3.4 Autocorrelation Analysis

The autocorrelation analysis is based on the correlation function which

is decfined as follows (Walpole and Meyers, 1989):

ro_Sxy
¥ SxxSyy
(3.34)
where Sxx, Syy and Sxy are given by
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i=1
(3.35)
The individual components in the summation arc defined as
xi=x(iAt)
yi=x((i+2)at)
(3.36)

where xj is an element of the original time scries x, At is the sampling interval
and y; is an clement of the original time serics x lagged by some factor A.
The correlation was calculated for each lag A. The error of the

autocorrelation is defined as

o)<t

(3.37)

The errors were calculated but are not displayed on the figures shown in this
study simply to render the figures more readable. The number of points in the

autocorrelation were chosen to minimize the error.
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3.5 Power Spectrum Analysis

We will use the method of calculating the power spectrum as described

by Press et al., (1986). The "power" calculated in this study is the mean squared
power defined as

T N-1
=1 24t =L 12
P-Tfolc(t)l dt NEOICJI

(3.38)

where A is the sampling interval, N the number of points and T=(N-1)A. The
power (P) is defined as a function of frequency (f) at N/2+1 discrete

frequencies by

=1 _Jcnl2
P(0) Nzlcol

_ 1 L N
P‘fk)-'b?“ckIZHCN-klz], k=1,2, ..., (X-1)

P(fc>=—131~zlcnhl2

(3.39)
where the frequencies fx and f. are defined as
fo=-1
2A
fi=—K-=20,K ; k=0,1,., N
NS 2
(3.40)

and the Fourier coefficients cx arc defined by the following
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N-1
CR=Z Cjeznijk/N 4 k=0: 1’ esey N°l
j=0
(3.41)

The "Welch" window was used on the data when applying the Fourier
transform (Press et al.,, 1986). The data was segmented to obtain the smallest
variance of the power for the number of data points in the transform. The
segments were overlapped by half their length M and the variance was
reduced by a factor of 9k/11 where k is the number of segments. The number

of data points required by the transform is (2k+1)M.
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Figure 3.1 Correlation integral of the sinc function with period equal to
thirty with 10% external noise. The total number of points is
2000.
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Kolmogorov entropy (K2) for the correlation integral of the sine
function shown in Figure 3.1 plotted as a function of increasing
embedding dimension. The curve asymptotically approaches the

value of 0, indicating periodic behavior.
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Figure 3.3 Phase space portrait of a sine function with period of 300 for a
time delay of t=1 and a time delay equal 1o the first zero in the

autocorrelation, i.e. 1=75.
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CHAPTER IV

OVERVIEW OF THE DATA

This chapter gives an overview of the data used in this study. It first
describes the theory behind the partial reflection radar from which the data
was obtaincd. This is followed by a description of the Saskatoon partial
reflection radar itself. The chapter concludes with a description of the data

from the Saskatoon radar used in this study.

4.1 Theor f Partial Reflection Radar

Partial reflection radars transmit an electro-magnetic pulse which is
both partially and totally reflected in the middle atmosphere. The reflected
signal creates a diffraction pattern on the ground which moves at a rate twice
the speed of the wind in the scattering layer at which the reflection occurred
(see Figure 4.1). This induces an e.m.f. in a stationary antenna. As the pattem
moves past the antenna, the induced e.m.f. varies in amplitude; this is called
radiowave fading. Normal signal analysis of partial reflection radar data
revolves around cross correlation of the signal peaks between antennas to
deduce the direction and speed of the wind. Comparisons of the fading rates
from at least three antennas give an estimate of the horizontal pattern
velocity and hence the velocity of the reflecting/scattering region.

The mechanisms causing the echoes range from reflections from
sharply bounded irregularities in the refractive index to scattering (i.e,,
"partial reflections") from quasi-isotropic irregularities ("turbulent blobs")

whose scales are on the order of half the radar wavelength. At the altitudes
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measured by partial reflection radars (typically 50 - 120 km, depending on the
design and sensitivity of the radar), irregularities in the refractive index can
be created by frce electrons carried along by the neutral wind as well as
variations in potential temperature and moisture content (Hocking, 1985).
Short wavclength solar radiation ionizes the air in the upper atmosphere and
generates free eclectrons; concentrations of these free electrons typically vary
from less than ~ 102 cm=3 at 60 km to ~ 10* cm~3 at 100 km (Gregory and
Stephenson, 1972).

The refractive index varies primarily in the vertical, a consequence of
the increasc in the free electron density with height as well as changes in the
potential temperature with height. The signal strength generally increases
with height because of the vertical gradient in the refractive index. However,
there are horizontal variations in the refractive index which modulate the
transmitted pulse wave front so that the scattered/reflected wave is cquivalent

to an angular spectrum of planc waves. The horizontal variations in the

refractive index can be either a result of horizontal variations in the potential
temperature caused by turbulence or wave activity or horizontal variations in
the free electron density or a combination of both. This spectrum of plane
waves creates the diffraction pattern on the ground which is measured by the
receiving antcnnas (Fraser, 1984).

Echoes can be obtained from minimum heights of 50-60 km to heights
where the signal is totally reflected in the E or F region of the ionospherel.
The lower altitude limit is essentially a function of the sensitivity of the system
to signals that are only partially reflected in the lower mesosphere. The spatial
characteristics of the partial reflection regions vary from thin, stratified
( layer. to thick, turbulent layers. The thin, stratified layers are often less than
‘ 1 km thick (Fraser, 1984). Measurcments made near local solar nooi caii be

influenced by the D region of the ionosphere which extends further down into

~

IThe E region spans the altitude range 90 - 150 km. The F region encompasses
150 - 500 km (Kelley, 1989).
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the mesosphere2. The effects of the geomagnetic field on the motions of the
free electrons must be considered av heights where the electron—-neutral
collision frequency is low. This effect does not appear to be significant at
heights below 95-100 km (Fraser, 1984),

4.2 Saskatoon Partial Reflection Radar

The data used in this study came from the partial reflection radar
located at 52° N, 107° W in Saskatoon, Canada. This radar operates at an average
frequency of 2.2 MHz with an equivalent wavelength of 135 m. It emits an
approximately trapezoidal pulse with a width of 20 us; this is equivalent to a 3
km height resolaution (Manson et al.,, 1974; Gregory and Stephenson, 1972;
Manson and Meek, 1987; Meek ard Manson, 1987). Data are recorded for 23
height levels ranging from 52 km to 118 km in 3 km increments. The pulse
repetition rate used for this data set is 15 s—!, Data below 70 km is considered
unreliable (Meck, 1989, private communication).

The radar consists of a transmitter and four receiving antennas. The
receiving antenna array is laid out in a “Y” pattern with a separation between
antennas 1, 2 and 3 of 2A (270 m), iwice the waveclength of the radar. The
receiving antenna array is depicted in Figure 4.2, Measurements are taken at
each of the four amcnﬁas as the recording system cycles around the antenna

array at a rate of 15 Hz; this yiclds the 0.2666 second measurement separation

between measurements at cach antenna.

o
o

4.3 QOverview of the Data

The data sct was taken on 2 August (day of year 214) 1985 starting at
: 18:31:00 GMT and covers approximately one and a half hours (a total of 17910

%

2The D region is less than 90 km altitude.
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points). The data set has been described previously in the literature by Manson
and Meek (1987). Manson and Meek (1987) found several "glints" or regions of
focused turbulence in the data set to be used in this study.

The data were broker down into three separate files. There is a time gap
between thc files due to data recording considerations. The first file started at
18:31:00 GMT, ended at 19:01:12 GMT and consisted of 6705 points. There was a 2
minute 16 second gap between the first file and the second file which is
equivalent to 510 points. The second file began at 19:03:28 GMT and ended at
19:29:36 GMT for a total of 5895 points. There is a gap of approximately 40
seconds between the second and the third files which is equivalent to 146
points. The third file began at 19:30:15 GMT and ended at 19:53:50 GMT for a total
of 5310 points. The total number of points, not counting the breaks between
files, is 17910.

A careful cxamination of the raw data record seemed to reveal an
undocumented change of gain between the first and remaining files. The
apparent change in gain was signalled by a 20 second dropout in signal just
prior to the end of the first file (i.e., at point 6610). We calculated the variance
of the data for the first 6000 points and com ared that to the variance of the
remaining points for the seven levels between 76 and 94 km. The results of
these calculations are summarized in Table 4.1. The average ratio of the
variances over all seven levels was 3.08 which is very close to what you would
expect from a 10 db (i.e., a ratio of 3.16) changc in gain.

We used the F test (Walpole and Meyers, 1989) to determine whether the
variances were indecd the same., We were able to reject the hypothesis that the
variances were the sume for each level at the 99.995% confidence level. Thus,
it is safe to conclude that there was an undocumented gain change between

the first and the remaining files.
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Table 4.1 Summary of mean and variance changes in the data,

1 < n < 6000 7000 < n < 17900 Ratio of two
Level (km) Mean Variance Mean Variance | variances
76 101.4 306.4 103.8 99.8 3.07
79 100.4 969.7 104.4 680.3 1.43
82 99.0 1569.8 102.6 401.3 3.91
85 100.3 1052.6 102.9 413.3 2.55
88 98.1 1024.2 102.3 288.7 3.55
91 111.8 2341.9 108.4 400.9 5.84
94 115.4 958.0 113.9 774.8 1.24

There is also a difference in thc mean signal strength for each of the
seven levels between the first file and the last two files. We used the Student t
test to detcrmine whether the mcans belonged to the same population. We were
able to reject the hypothesis that the mean from the first file and the mean
from the sccond and third files at cach lcvel belonged to the same population
at the 99.95% lcvel. The change in mean over the approximate hour and a half
that is spanned by thc data set 1s most likely due to receiver drift. Meek
(personal communication, 1989) reports that the data should be corrected for
receiver drift for observation periods longer than an hour.

The variance is low for the 76 km data compared to that for the other
levels above 76 km. In general, thc signal strength increases with neight.
There was very little variation in the signal for levels below 76 km which is
why data from these levels were not even considered beyond some
preliminary esamination.

We tested for receiver drift over the lengin of the first file by
calculating the mean and variance in 500 point groups from point number one
to point number 6500 for each of the seven levels (76 through 94 km). The
hypothesis that the means for each level belonged to the same population was

accepted at the 95% confidence level. While this hypothesis was not accepted at
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a more rigorous confidence level (i.e., one > 95%), it seems reasonable to
assume that any receiver drift over the first data file (a period of
approximately 30 minutes) was minimal.

These two problems, receiver drift and change in signal gain, could be
corrected. The drift in the mean could be easily remedied by detrending the
data. The change in the gain could be eliminated by subtracting out the
detrended mean, multiplying by the ratio of the variances and adding back the
mean. While making any changes to the original data increases the risk of
rendering any dimension estimates inaccurate, these changes represent the
least significant risk. However, there was onc additional problem that
eliminated almost two thirds of the data from consideration.

In addition to the gain change, the data in the second and third files
appeared to be contaminated by a high frequency oscillation. This was almost
certainly duc to a folding back of some portion of the long range signal into
the lower height gates. The oscillation can be scen clearly in the
autocorrelation (see Figure 4.3) and power spectrum (see Figure 4.4) of data
from the sccond and third files. The oscillation was present in the signal at all
of the heights (76-94 km) to be used in this study, but it was strongest in the
data from 91 and 94 km. The oscillation occurred with a period of .867 s, which
is slightly greater than every third point.

Filtering the data could easily remove this high frequency signal.
However, doing so would increase the uncertainty in any estimate of the
dimension of the system and possibly suggest the presence of an attractor
where there was none. Because of this, we decided to eliminate data from the
second and third data files from further analysis. Only data from the first file
(6705 points - 18:31:00 to 19:01:12 GMT) was considered in further analysis.

The data for ecach of the four antennas and seven levels from 76 to 94 km
is shown in Figures 4.5 - 4.8. The data shown in the figures was averaged over

3.5 s and only every thirteenth point was plotted in order to improve legibility.
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Several features are immediately obvious from examining the data. The
N variation in the signal for lcvels 76 and 79 km is generally much less than for
} the upper levels for all antennas. In addition, the variation in signal strength
is slightly less at all levels for antenna #4 than for the other three antennas.

Meek and Manson (1987) found a strong scattering layer to be located at
82 km in a previous study of this data set. The variation in signal strength then
increases again for 91 and 94 km. This phenomena can be most easily seen in
the data from antenna #4 shown in Figure 4.8. The presence of a strong

/ scattering layer near 82 km is often seen in the summer mesosphere (Fraser,
1984).
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Motion of the pattern

F Antenna

Diffraction pattern

Figure 4.1 Depiction of a diffraction pattern on the ground moving past the
antenna array. The antennas are shown by the squares and the

direction of motion of the paticrn is indicated by the arrow.
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Figure 4.2. Receiving array of Saskatoon radar in the Y configuration,
(adapted from Meek and Manson, 1987)
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Antenna #1
Level = 94 km
14000 < n < 16000

Autocorrelation

0 20 40 60 80 100120140160180 200
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Figure 4.3 Autocorrelation for antenna #1 at 94 km for points 14000
¢ through 16000 (i.e., data from the contaminated third file).
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- Figure 4.4 Power spectrum for antenna #1 at 94 km This includes the data

from the contaminated second and third files.
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Figure 4.5

Data from antenna #1 for (a) 76 km; (b) 79 km; (c) 82 km; (d) 85
km; (e) 88 km; (f) 91 km; and (g) 94 km. The data starts at 18:31:00
GMT. The figurc is on the following pages.
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Figure 4.5 (c)
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Figure 4.5 (d)
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Figure 4.6

e .

Data from antcnna #2 for (a) 76 km; (b) 79 km; (c) 82 km; (d) 85
km; (e) 88 km; (f) 91 km; and (g) 94 km. The data starts at 18:31:00
GMT. The figure is on the following pages.
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Data from antenna #3 for (a) 76 km; (b) 79 km; (c¢) 82 km; (d) 85
km; (¢) 88 km; (f) 91 km; and (g) 94 km. The data starts at 18:31:00

GMT. The figure is on the following pages.
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Data from antenna #4 for (a) 76 km; (b) 79 km; (c) 82 km; (d) 85
km; (e) 88 km; (f) 91 km; and (g) 94 km. The data starts at 18:31:00
GMT. The figure is on the following pages.
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CHAPTER V

ANALYSIS AND INTERPRETATION

This chapter contains the results of the analysis of the data and the
interpretation of those results. It first describes how the Grassberger-
Procaccia algorithm was applied to the data, followed by the results of that
analysis. Analysis of the power spectra of the echo data from the partial
reflection radar follows. The chapter concludes with the interpretation of

results from the implementation of the Grassberger-Procaccia algorithm.

5.1 Analysis

Determiring the optimum time delay for building the phase space
reconstruction of the attractor is the first step in applying the Grassberger—
Procaccia algorithm. We will use the first local minimum in the mutual
information as the best time delay and the first zero in the autocorrelation to
determine the number of autocorrelated vectors to exclude from the

summation in the correlation integral, i.c., the value of W from equation 3.32.

5.1.1 Calculating the best choice for time delay

The mutual information was calculated from equation 3.28 with up to 200
lags. The radar data ranges from a minimum value of 0 to a maximum value of
255; the integral was divided inio boxes with sides AX and AY of length 10. This
box size was chosen to provide the best convergence for the integral over the
entire range of lag§2 The mutual information was calculated using the first

6000 points of the data from each of the four antennas. It was not possible to
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calculate the mutual information for a smaller number of points because the
probabilitics would not be statistically valid. An even larger number of points
would have been desirable.

The results of the mutual information calculation are depicted in
Figures 5.1 - 5.4. In general, the mutual information drops off very quickly
with incrcasing values of lag. There are some oscillatory characteristics at
larger lags but they are small in amplitude. The lag for which the first minima
in the mutual information occurs is summarized for cach level in Table 5.1; the

subscripts indicatc the antenna for which the calculations were performed.

Tablc 5.1 Lag for the first local minimum in the mutual information.
Level (km) | T T2 13 ) T4

76 12 10 9 12

79 18 20 19 18

82 17 19 18 19

85 15 19 18 15

88 14 17 16 16

91 22 19 17 17

94 13 17 14 18

5.1.2 Autocorrelation

The autocorrelation was calculated up to a maximum of 200 lags using
equation 3.35. The maximum error according to equation 3.37 was less than
0.05% at the two hundredth lag. The data for each level and artenna was
divided into threc 2000 point groups (1 < n <2000, 2000< n <4000, 4000 <
n < 6000) and the autccorrelation was calculated separately for each group.

The autocorrelations for each antenna and lével are shown in Figures

5.5 — 5.8. As with the mutual information, the autocorrelation eéxhibited some
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oscillatory behavior as a function of lag. In general, the autocorrelation was
smoother and not as noisy as the mutual information.
The average lag (A) at which the first zero in the autocorrelation occurs
i for each level and antenna is summarized in Table 5.2. The average lag is the
average of the first zero of the three 2000 point groups. The subscript of A

indicates the antenna.

Table 5.2 Lag (A) for the first zero in the autocorrelation.

Level (km) Al A2 A3 A4
76 24 9 8 8
79 20 18 17 20
82 22 22 28 28
85 11 10 10 11
88 15 16 13 18
91 18 18 18 18
94 15 15 17 18
f 5.1.3 Calculating W

Since we intend to use Theiler's modification of the Grassberger—
Procaccia algorithm, we must use the information from Tables 5.1 and 5.2 to
calculate the value of W (see cquation 3.33), the number of autocorrelated
vectors to skip in the summation. The value of W for each antenna and level is
summarized in Table 5.3. The subscript again indicates the antenna. The

calculation is based on a total of 1500 points and a maximum embedding

i

- dimension of 13. The values have been rounded up to the next greatest integer
since Theiler's modification of the Grassberger-Procaccia algorithm employs

: integer values of the time step in the summation.
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Table 5.3 The value of W for each antenna and level (N=1500, m=13).

| Leve! (km) Wy w2 W3 Wy
76 9 4 3
79 8 7 7 8
82 8 8 11 11
85 4 4 4 4
88 6 6 5 7
91 7 7 7 7
94 6 6 7 7

5.1.4 lmplementing the Grassberger-Procaccia algorithm

We will use Theiler's (1986) modification of the Grassberger-Procaccia
algorithm to calculate the base statistics necessary to estimate the dimension of

the system. The exact algorithm implemented in this analysis is given by

N N m-1 L
C. (g N)= N(l%l-l) Z’l E-[ 0(xi+k'xj+k)2] 2

H
j=i+W k=
(5.1)

where N is the number of points in the data series, x is the reconstructed phase
space vector, € is the "search" radius, H is thc Hecaviside function and W the
number of autocorrelated vectors to skip (see preceding section for the values
of W).

We used the normalization factor, (2/N(N-1)), which did not include the
calculation of the "self pair" terms nor did we perform the summation over the
full range of indices. Both of these decisions were based on the desire to reduce
the number of calculations since the amount of computer time required by the
algorithm grows by the square of the number of points. Tests run on known

attractors, strange and periodic, and noise (i.e., the Henon attractor, a sine
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function of known period and Caussian noise) with a limited number of points
(<1000) revealed no convergence problems in the correlation algorithm as
described by equation 5.1. Since the Grassberger-Procaccia algorithm is widely
used by experimenters without calculating the full double summation or the
"self pair" terms and our tests showed no decrease in convergence, we decided
to use the computationally less demanding form given by equation 5.1.

The algorithm was optimized for the data set. The correlation integral
was calculated for 150 values of ¢ evenly spaced logarithmically over the
interval from In e=1 to In e=7. This was repeated for 12 different values of
embedding dimension from 2 through 13. Because of the likelihood of the data
set being non-stationary, the algorithm was applied to overlapping 1500 point
groups. Each group overlapped the previous group by half the number of data
points in the analysis. Thus, the calculations were repeated for the following
seven groups of points: 1< n < 1500; 750 < n < 2250; 1500< n < 3000;
2250 < n £3750; 3000 < n < 4500; 3750 < n <5250 and 4500< n < 6000. A
limited number of runs were done for 5000 points. Each set of calculations was
repeated for each level (76 through 94 km) of each antenna. This resulted in
over 196 scparate sets of calculations.

All the calculations were performed on either a Macintosh IIcx or
Macintosh IIci computer. FORTRAN was used for all computer programs.

A rcpresentative set of plots of the correlation integral for each level is
shown in Figure 5.9. The set of points was chosen arbitrarily as was the
antenna. This set of figures is entirely representative of all the overlapping
segments for all levels for each of the antennas. The entire set of calculations

is represented by the graphs shown in Appendix A.

5.2 Power Svectrum Analysis

The power spectrum was implemented upon the basis of equations 3.39-

3.41. The Fast Fourier Transform (FFT) from Press et al. (1986) required the
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number of points analyzed to be a power of 2. To obtain a power spectrum
which extended out to the buoyancy period (~5 min) required a total of 8192
points. This excceded the total number of points in the first file, Consequently,
some data (a total of 1487 points -- approximately 6 min 36 s) from the second
file were included in the power spectrum calculations. We did not correct for
the gap between the first and second file.

We performed tests on data with a known period to determine the degree
of aliasing introduced by the time gap between the files. Tests showed that
/ there was some aliasing but also that it was not expected to be a major source of

error. Any errors introduced by not correcting for the time gap are on the

order of crrors introduced by the change in variance of the data from the

second file.

The power spectra for antennas 1 through 4 at all levels are shown in

Figure 5.10-5.13, respectively. Note that the x axis represents the period and is

depicted in reverse order. This was done to give the figures the more common
' appearancc of power spectra as a function of frequency. Interpreting the
power spectra as a function of period is the same for frequency as long as one
bears in mind that the slope of any power law behavior will be the negative of
what you would uormally expect.

The power spectra exhibited the same general characteristics for all
levels and antennas. Each power spectrum had three (sometimes four) distinct
regions. The power spectra were flat for periods less than 1-2 seconds. In
general, the spectra were flat for periods less than 2 seconds for 76 km; this
- region decrcased to periods less than approximately 1 s at 94 km. The flat
region was followed by a region that clearly exhibited power law behavior
(i.e., constant slope on a log-log plot); this usually occurred in the period
range between 1-2 and approximately 6-10 s. Weaker power law behavior (i.c.,
the slope on the log-log plot was not well defined) occurred in the region
between approximately 10 and 200 s. Each power spectrum contained the peak

1 energy in the longest period, near the Brumt-Viisdlld period for the
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mesosphere. Power spectra for antenna #4 were qualitatively similar to those
for the other three antennas except that the power over the entire spectrum
was less. This is most likely due to the reduced variance in the data from
antenna #4 described in Chapter 1V,

To further understand the behavior described by the power spectra, we
fit different portions of the power spectra to a power law. These results are
shown in Figures 5.14-5.17. The fitted power slopes for the stronger power law

behavior (i.e., between 1-2 s and 6-10 s) are summarized in Table 5.4.

Table 5.4 Slope for power law curve fits between 1-2 and 6-10 s.

Level Antenna Antenna Antenna Antenna Average

(km) #1 #2 #3 #4 Slope
76 7.0 5.3 5.7 5.2 5.8
79 5.0 6.6 5.5 - 5.7
82 2.7 2.3 2.7 1.9 24
85 3.0 2.9 3.0 2.4 2.8
88 3.4 1.5* 3.1 3.0 2.8*
91 2.9 1.5* 3.5 2.4 2.6"
94 3.7 2.1* 4.2 4.0 35"

*These slopes arc distinctly different than those for the other antennas. The
average includes these values.

We must be careful in interpreting the apparent power law behavior.
There has been almost no work done on interpretation of power spectrum
analysis of echo data from partial reflection radars and we should be cautious
in treating it in the same manner as that for horizontal and vertical winds.

Hocking (1985) defines the length scale for the viscous region in the
mesosphere as less than 3-6 m at 70 km and less than 20-30 m at 90 km. In the
viscous region, the kinetic energy of turbulent eddies is diminished by viscous

effects and dissipated as heat.
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The length scale for the buoyancy region in the mesosphere is greater
than 60-1000 m (Hocking, 1985). At large scales, the buoyancy effects become
important. In the buoyancy region, the turbulent eddies take on a "pancake"
like appearance (Hocking, 1985) and consequently, the horizontal length
scales are much greater than the vertical length scales.

The inertial region lies between the viscous and buoyancy regions.
Hocking (1985) notes that the break in the slope of power spectra between the
viscous and inertial regions occurs at length scales two to four times the
length scalc of the viscous region.

The flat region in the power spectra corresponds to the amount of time
it takes the smallest size eddy that can be detected by the radar (i.e.,
approximatcly 70 m) to bc advected past the radar. The maximum period of the
flat region decrcascs at higher levels because of the general increase in the
wind speed with hcight. Meek and Manson (1987) give the wind speed at 76 km
as approximately 30 m s-1, incrcasing to approximately 60 m s-! near 94 km
for this time period at Saskatoon.

The region between 1-2 and 6-10 s is most likely the viscous region.
While the radar can not detect turbulent eddies small enough to be in the
viscous region, it can dctect variations in the motion of the echo patterns that
occur on time scales which correspond to the viscous region. The power
spectra length scales for the viscous region can be calculated from the period

¢ using the multiplicative factor from Hocking (1985), the wind speed and a
factor of 2r; they correspond to those given by Hocking (1985). This
interpretation assumes the Taylor hypothesis, i.e., the eddies causing the

diffraction pattern are "frozen” and do not evolve with time as they pass over

wdom,

the receiver array. Power law behavior in the viscous region is commonly
described by
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E(k)e< k7
(5.2)

where k is the horizontal wave number. The region over whkich the power law
behavior is valid increases with height because so does the length scale for
the viscous region. Note that the slopes for the power law behavior (see Table
5.4) for 76 and 79 km are almost as large as -7. This behavior does not hold for
altitudes above 79 km.

The region between approximately 10 and 200 s is the inertial region.
This region cxhibits much weaker power law behavior than the viscous
region. Some power law curve fits for this region are shown in Figures 5.14 -
5.17. The radar does directly detect eddies on the length scales of the inertial
region. This, combined with fluctuations of the wind speeds on time scales
cquivalent to the inertial region length scales, may explain the departure of

the power law curve fit from the commonly expected -5/3 behavior.

5.3 Interpretation

The first step in interpreting the output of the correlation integral
algorithm lies in determining the slope as a function of e&. Once the slope has
been calculated, we can determine if there is an attractor present and its

dimension. First, let us discuss how to interpret the slope as a function of €.

5.3.1 Interpreting the Slope as a Function of €

The slope of the lines from the correlation integral algorithm should
equal the fractal dimension of the attractor when plotted on a In-In graph. The
plot of the slope of the natural logarithm of the correlation integral against

the natural logarithm of the radius ¢ can be divided into four distinct regions.
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Each region yields information on the algorithm and the underlying attractor.
Figure 5.18 shows a idealized diagram of such a plot.

Region A in Figure 5.18 is the section where the statistics are limited by
the number of points in the data set. The slope in this region starts out near
zero and often is characterized by some oscillatory behavior. The slope is zero
because thc number of points in a "ball" of radius € approaches zero as ¢
approaches zero. Oscillatory behavior is the result of fluctuations in the
counting statistics because of the limited number of data points.

Region B is dominated by instrumental and external noise. The slope is
proportional to the embedding dimension. In this region, the "balls" are
smaller than the smallest temporal and spatial scale of the attractor. Often, the
slope will only approach thc embedding dimension; this occurs primarily at
the higher embedding dimensions because there aren't enough points to
adequately saturate higher dimensional spaces.

There will always be a transition between rcgions A and B for data sets
where therc are a finite number of points. As the number of points increases
this transition would occur at increasingly smaller values of e.

Region C is the "scaling” region. This region is characterized by
constant slope which, at high enough embedding dimension, should equal the
fractal dimension of the attractor. The slopes should converge to a common
value for cmbedding dimensions equal or greater than 2d+1 since this
dimension phase space will completely embed the attractor. The width of the
scaling region is vital. The limits imposed on the original definition of the
correlation integral necessitate a scaling region which spans several orders of
magnitude. Noise reduces the width of the scaling region and may make it
difficult to discern. A high signal-to-noise ratio yields a larger scaling region
whereas signals characterized by a low signal-to-noise ratio will have a very

small scaling region or may not have one at all.
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There may be multiple scaling regions present in region C if there are
attractors of different length scales present in the data. Multiple attractors in
the data would lead to distinct plateaus in the slope diagram.

Region D is characterized by the slope converging to zero. As ¢
increases and approaches the size of the attractor, the "balls" contain nearly
the total number of points in the system. Thus the slope approaches zero. In
some systems, the transition from region C to D is characterized by a small
"hump" or rcgion of higher slopes. This "hump" occurs because of edge effects
of the "balls" used to count the points and curvature of the attractor

(Brandstiter and Swinney, 1987).

5.3.2 Calculating the Slope

The slope of the lines in Figure 5.9 was calculated using a seven point
least squarcs fit (the algorithm was taken from Press ct al., 1986). The slope
calculated for each point was the least squares fit of the point extending three
points on cither side. The errors of the least squares fit were calculated but not
displayed so as to rcnder the figures more legible.

The results of this analysis are shown in Figure 5.19. Examination of the
figures reveals no apparent scaling region for any level. The data set seems to
te characterized by noise for times scales less than 6 min 40 s (i.e., 1500
points). There may be a higher dimension attractor in the data but it can not
be detected with only 1500 points and thus will appear as noise. While
recognizing this possibility, we will consider the results to be noise for
purposes of discussion. The slopes of the entire correlation integral analysis

are given in Appendix B.
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5.3.3 Why Noise?

There does not appear to be an attractor in this data set. Noise seems be
present in the signal for all time scales that were investigated. This leads us to
the question -- why have we found only noise and should we have expected it?

The lack of positive results may be attributed to one or any combination
of reasons. These fall into three broad categories: difficulties with the

algorithm, difficulties with the data and an invalid hypothesis.

5.3.3.1 Difficulties with the algorithm

As was previously described in Chapter III, the Grassberger-Procaccia
algorithm has a number of weaknesses that make it difficult to implement.
Among thesc are the finite size of thc data set, noisc (both instrumental and
external) and the inability of the algorithm to detect the presence of an
attractor amid a wide spectrum of competing signals.

The idcalized models of gravity wave breaking invoke a single
monochromatic wave that becomes unstable at some point as it travels upward.
This is almost certainly not the case in the atmosphere; instead of a single
monochromatic gravity wave, therc is an entire spectrum of gravity waves
which travel in packets. As pointed out earlier, the spectrum of wrves gives
rise to nonlinear wave-wave interaction.

It is not known whether the Grassberger-Procaccia algorithm could
pick out the presencc of a strange attractor in such a sea of competing signals,
some of which might have time scales on the order of the attractor. While
there has been a limited investigation imo{ the use of the algorithm in the
presence of two competing signals, its use on a spectrum of signals remains
largely unexplored.

The limited size of the data set could also prevent detection of an
attractor, especially if the dimension is greater than 3. The 1500 point case is

not adequate to accurately estimate the dimension of systems with dimensions
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greater than or equal to 2. However, 1500 points should be sufficient to test for
the presence of an attractor of dimension 3 or less.

We did perform a limited set of calculations using 5000 points for 82 and
85 km. The data analyzed was an average of all four antennas. Unfortunately,
these calculations were performed with an incorrect value of the time delay
used to reconstruct the phase space vectors; the value of the time delay was
only 2 instcad of the values given in Table 5.1. The results of these calculations
are shown in Figure 5.20. From the plot of the slope as a function of ¢, there
doesn't appcar to bc an attractor in this data set for the 5000 point time scale
(i.e., 22 min 13s). While it is true that these results are not as reliable as those
for the 1500 point cases because of the incorrect choice of time delay, the
greater number of points makes the exact choice of the time delay less crucial,
especially since we found only noisc. Had the 5000 point case suggested the
presence of an attractor, we would be inclined to interpret the results with
more caution. We look upon the 5000 point case as further support for the
absence of an attractor and there only being noise in this data set.

The degree of autocorrelation and the lack of general independence as
determined from the mutual information also reduces the useable size of the
data set and contributes to the problems in the algorithm from a limited
number of points,

The noise in the signal is the biggest problem. Therc may only be noise
in the data on the time scales examined here or the signal-to-noise ratio may
be so low as to completely obscure the scaling region of an attractor. The
degree to which the noise is instrumental or external will be touched upon in

a later section.

5.3.3.2 Difficulties with the Data

The problems associated with the data fall into two categories: no
gravity waves in the data set and the quality of the data itsclf. The issue of data

quality overlaps some of the limitations of the Grassberger-Procaccia
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algorithm that have been discussed in previous sections. The second problem
is not really a problem but a statement of fact: we found nothing but noise in
the data becausc there really was nothing but noise in the data. First let us
discuss the quality of the data itself.

The biggest problem that occurred was the high frequency “ringing"
present in the data in the second and third file. This so contaminated the data
that some preliminary analysis of these signals suggested the presence of an
attractor with finite dimensions until the cause was discovered. (The plots of
the original data set that were supplied to us indicated no such rroblems). As
mentioned earlier, this high frequency contamination of the data precluded
the use of almost an hour of data, thus severcly reducing the size of the data
set. This exacerbated the problems that occur with finite data sets as described
in previous sections.

~ addition to the "ringing", gain changes and drift in the receiver
presenied an additional source of error. While each of these problems could
have been corrected, doing so would have introduced an additional degree of
uncertainty into any dimension estimates. These problems precluded use of the
last two files.

The eclimination of almost two thirds of the data set emphasizes the
Grassberger-Procaccia algorithm's need for lengthy data records. Data analysts
always complain they could use more data, but in this case it seems to be an
absolute nccessity. Without a sufficient number of points, the entire algorithm
is not statistically valid.

This data set may contain no evidence of gravity wave breaking. The
data set was originally suggested to us as one that potentially contained
evidence of gravity wave breaking,

Meek and Manson (1987) used this data set to examine "glints" in the

patten of echoes at the receiver. The "glints" were regions of strong

persistent cchoes that travelled in a straight line through the receiver array.
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They speculate that the glints were either long lived pockets of turbulence or
focusing of the signal due to favorable alignment of surfaces of the wave.

Meek and Manson (1987) found two glints in the data set from day 214
that has been examined in this study. The first glint was observed between
18:31:24 and 18:34:36 GMT as it travelled through the receiver array. The
second glint was observed between 18:47:48 and 18:49:24 GMT. The velocity of a
glint could be dcduced by tracking the amount of time it took to cross the
receiver array; Meek and Manson (1987) estimated that both glints had
velocities of ~ 50 m s-!. If the glints were caused by focusing of the turbulence
along the surfacc of a wave, the period of the wave can be dediced from the
difference in time between the glints. The period of a wave travelling 50 m s-!
is approximately 5 minutes which is roughly the same as estimates of the
Brant-Viisdlld period in the mesosphere.

Meek and Manson (1987) used a wave model to determine if the glints
could be cansed by focusing along the surface of a travclling wave. The wave
model reproduced the observations of the glints well. Meek and Manson
further speculated that the waves responsible for the glints were close to their
critical levels since their phasc vclocities matched the parallel component of
the background wind (an instability criterion given by Fritts and Rastogi,
1985). Thus, while Mcck and Manson did not directly observe gravity waves
breaking, they speculated the conditions were favorable for this occurrence.

Unfortunately, we could find no evidence of gravity wave activity in
our analysis of the data set. Power spectra of the data for each level and
antenna showed no evidence for wave activity near the Brunt-Viisilld
frequency. To detect periods in the power spectrum out to the Brunt-Viisdlld
period required using data from the contaminated second and third files. The
problems previously discussed in detail may have prevented us from detecting
long period signals in the power spectrum.

Meek and Manson (1987) found evidence of wave activity in this data

set. Furthermore, they spcculatcd that the waves causing the glints may be
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near saturation. While our analysis of the data set could not support this
conclusion for the reasons described above, neither could we rule it out
conclusively, This still leaves us with the unanswered question of whether or

not the presence of breaking gravity waves exists in the data set.

5.3.3.3 Invalid Bypothesis

The last reason why we may not have detected anything but noise in the
signal is that the hypothesis is invalid. Gravity wave breaking and the
subsequent decay to turbulence may not be characterized by chaotic behavior.
The analogies to laboratory studies may be incorrect or they may not extend to
the real atmosphere where there is an entirc spectrum of activity besides
gravity waves. On the other hand, the hypothesis may be valid; the breakdown
of atmospheric gravity waves may be characterized by chaotic behavior but it
is of such an cphemeral nature we may not be able to detect it.

The extension of the results from laboratory experiments to the
atmosphere may be invalid. In our review of some of the laboratory studies, we
examined chaotic behavior which arose from convective instabilities
(Rayleigh-Bénard convection) and dynamic instabilities (Couette-Taylor flow)
in closed systems and dynamic instabilities in open systems (the excited jet).
None of these regimes are similar to the type of flow and instabilities thought
to describe gravity waves and their breakdown, although the shear
instabilities present in the excited jet are somewhat similar to one type of
dynamical instability that may occur in gravity waves. It may be wrong to
infer chaotic behavior in breaking gravity waves on this basis.

Laboratory experiments are held under tightly controlled conditions
which are very unlike those found in the atmosphere. Only one spectrum of
activity is studied making it easier to detect chaotic behavior in a fluid. Gravity
wave breaking in the atmosphere is accompanied by a wide range of other

types of processes in the atmosphere, some of which have time scales that

P

overlap those of gravity waves. Detecling chaotic behavior in such a weler of
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potentially conflicting data may be nearly impossible. Furthermore, the
interaction of gravity wave breaking and other types of atmospheric motion
may eliminate any chaotic behavior that might occur otherwise.

Laboratory experiments allow for the genecration of a long period of
measurements. The conditions which control the instability of the fluid flow
can be held constant allowing measurements to be made of the long term
evolution of its chaotic bechavior. The flow is "continuously unstable".

Gravity wave breaking is a transient phenomenon; gravity waves
propagate upward and may becomc unstable and break down. A better
cxtension of the laboratory analogy would be a continuous source of gravity
waves which beccome unstable and break without modifying the basic state
flow at some level. This scenario is unlikely to ever occur in the real
atmosphere, much lcss at a time and place where measurements were being
made.

Chaotic behavior in gravity wave breaking may be so ephemeral that
we may ncver be able to detect it. Bonetti and Boon (1989) recommended a
sampling rate of 10 to 30 measurements per pscudo-pecriod of the orbit of the
attractor. If we consider Smith's (1988) estimate of the number of points
required to accurately estimate the dimension using the Grassberger-
Procaccia algorithm for an attractor of dimension 2, and Bonetti and Boon's
estimate of the sampling rate, we must sample approximately between 59 and
176 orbits to fully characterize the attractor! If we assume that the pseudo-
period of an auractor in the breaking of gravity waves is on the order of the
Brunt-Viisilli period (5 minutes) and a dimension on the order of 2, we would
have to make measurements for more than 6 hours. The length of time may be
even greater if the attractor were of higher dimensions which is very likely.

Six hours is practically an eternity for the phenomena we are
considering in the atmosphere. The data set would not be stationary over this
length of time and atmospheric flow regimes with longer time scales (tides,

synoptic scale activity) would contaminate the data set. This requirement
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almost certainly eliminates finding chaotic behavior in gravity wave
breaking since gravity waves that break decay to turbulence at a rate much

faster than 6 hours.
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Figure 5.8 Autocorrelation (2000 point groups) for antenna #4 for (a) 76
km, (b) 79 km, (c) 82 km, (d) 85 km, (e) 88 km, (f) 91 km and (g)
94 km.

142




Autocorrelation

Autocorrelation

0.8

0.6

0.4

0.2

-0.2

-0.4

Antenna #4
Level = 79 km

-——  0<n< 2000
—= - = 2000 < n < 4000
-~ — = 4000 < n < 6000

[l A l ol A1 - L L ' 1 L ] l 1 A F A
I 1 i
0 50 100 150 200
Lag
Figure 5.8(b)
|
Antenna #4 .
- Level = 82 km 0 <n< 2000
f — - = 2000 < n < 4000
-:’.\" — — - 4000 < n < 6000
-+
-
[
i L e L e i ;S l L A ;| L l L i 1 I
J I 1
0 50 100 150 200
Lag

Figure 5.8 (c)

143




e e

——

Autocorrelation

Autocorrelation

0.8

0.6

0.4

0.2

-0.2

-0.4

Antenna #4
Level = 85 km

0 <n< 2000

— - = 2000 < n < 4000
— — - 4000 < n < 6000

0 50 100 150 200
Lag
Figure 5.8 (d)

C Antenna #4

-
+ Level = 88 km 0 <n< 2000

bl —-— - - 2000 < n < 4000

il
T - — = 4000 < n < 6000
L

L\

L\ o~
—.:.. 3 A o~ v A o A A
L g NN L - A e Ny
3 - - ~

! <

[

PR WA SRR VRO SN S WA RN WU (NN W W WU SHE NN NN S
1 I 1
0 50 100 150 200
Lag

Figure 5.8 (e)

144




s,

Autocorrelation

Autocorrelation

0.8

0.6

0.4

0.2

-0.2

-0.4

0.8

0.6

0.4

0.2

-0.2

-0.4

Antenna #4
Level = 91 km

A

T LA J L S LN LELIRJ LRI
I 1 ) I V.

-  O<n< 2000
— - = 2000 < n < 4000
— =~ = 4000 < n < 6000

\

-

\\
W 1
' TR — ,/ .
\s\> / \M:\\ ~ 7 \\ // ’\V<’
N
N/

i T S i L i " N N . 1 L 4 .
1 T 1
0 50 100 150 200
Lag
Figure 5.8 (f)
Antenna #4
i Level = 94 km 0 <n < 2000
2 — - - 2000 < n < 4000
¥ ~ — - 4000 < n < 6000

~ < 7 N\

1 ’ 3 1 I l A A l d i 1 4 .‘_ ) — | 'l i
| 1 T ]
0 50 100 150 200
Lag

Figure 5.8 (g)




G g T, ey .
T e i Shime A e RS TR s e A R

.
-

—

0.0
Antenna #1
" Level = 76 km
" 1< n < 1500
-2.0 T
a0 T .T;.s' - e
L 53‘: . l. o m=2
/ : 7 e e me
= -6.0 b et / " ‘ — ® -m=4
E | ' --¥%-m=5
QO
= 3 -+ -m=6
-8.0 | / -5 -m=7
. I /’ --®-m=8
e ~—l--m=
-10.0 m= 9
f i ——m=10
L —aA "m=11
-12.0 ":' .P - . -m=12
: D & E N EEET m=13
o H ! ]
' . | 1.1 l Lk 1 1 -1: 1 2 J:I:' ll IJJ—l 73 l I J - ] 1 J I I B 1 l 1 | - 1
-14.0 ] 1
0 1 2 3 4 5 6 7
in(e)
r Figure 5.9(a)

Figure 5.9 Correlation integral plotted as a function of embedding
dimension m for points 1 through 1500 from antenna 1 for (a) 76
f km; (b) 79 km; (c) 82 km; (d) 85 km (e) 88km; (f) 91 km and (g) 94

o

km.

146




N e

0.0
Antenna #1
- Level = 79 km
. " 1< n < 1500
) -2.0 T
-4.0 p o mez
: \"‘:\ — - -m=3
T -6.0 T mgé’” — ¢ -m=4
[ X -m=5
4 OE | <§9
£ 1 + - m=6
8.0 T —4 -m=7
i / --®-m=8
— ] —.'_m=9
-10.0
] i / —e—m=10
p L , —4A —-m=11
12,0 T | ' (' / A - ® -m=12
3 ® r | é
s > (!H ----- m=13
.1 bl IIJMJ'-}IJ/:‘}I'III PR SOV WU TR W I WO T T
-14.0 | T | T

In{¢c)

Figure 5.9(b)

147




o

In Cm (e)

0.0

-10.0

-12.0

-14.0

Antenna #1
Level = 82 km
" 1< n < 1500
X

¥ ¥

""" m=13

Alll:“lj.al}-ll‘l-l%’-lo-ll/l-'illllillll}llll

In(e)

Figure 5.9 (¢)

148




v,

N
Y

In Cm (=)

0.0

-10.0

-12.0

-14.0

¥ Ll T v+ T L] ' T Bl L)

-

Antenna #1
Level = 85 km
1< n <1500

g
8%y

Figure 5.9(d)

149




In Cm (€)

0.0
Antenna #1
Level = 88 km
" 1< n < 1500
2.0 T
-4.0 T &
o )E (o] m=2
8 ""\ — - -m=3
-6.0 T m&gm ' — % -m=4
: 69 --X--m=5
- o+ - m=6
-8.0 i 7 —4& -m=7
] / --@-m=8
e —B--m=
-10.0 / m=9
i —&—m=10
S A e
12,0 T al X ~— ® -m=12
- [ ] f /{ '/f
- :‘ ! \ ! N m=13
' ' R G
1 11 R o 44] TN AT AT AT B
14.0 L il !

Figure 5.9(e)

150




in Crn (e)

0.0

-10.0

-12.0

-14.0

Antenna #1

Level = 91 km

1< n < 1500

o m=2
-— - ~m=3
-~ ® ~m=4

--%-m=5
-~ + - m=6
—54& ~m=7
--@~m=8
—H-~-m=9
—&—m=10
—4A -m=11
- ® -m=12

-----m=13

Figure 5.9(f)

151




0.0
[ Antenna #1
[ Level = 94 km
m 1< n < 1500
2.0 T
-4.0 ‘:“‘i: ’ ' o m=2
: & N — - -m=3
@ -6.0 T ;ﬁsf‘ / ' o - ® -m=4
E i e =% -m=5
O 0y "
£ - -o4 - m=6
v 8 0 :- —5N -m=7
i / ~-@®-m=8
——— ’ '—‘."m=9
-10.0 / ,
i ) : iy —e—m=10
s $ ') ;1/,
r I J 4R —a4 -m=11
' ,, / /:
-12.0 T ! ;o /g’ —® -m=12
b . ¢ t
- " e /J -----m=13
i ¢ I [j“ 5,"
, SR B i)
J .} '] i l 'l i l-* l-1 F l I 1 l 11 L1 l 1 i 1 Il ‘ |
-14.0 . E— m 1 I

In(g)

Figure 5.9(g)

152




O P

Antenna #1
/ 10° Level = 76 km

Power Spectral Density
=

‘ 10°

107"

1 0' 2 'lll_Ll 1 1 2 llA_lJ 1 4 1 ! llll 2 & 1 1 1 llJJ jIy e | 1 i 1 l
' 1000 100 10 1 0.1
3 Period (s)

Figure 5.10(a)

-
i
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Correlation integral (a) and corresponding slope (b) for 82 km

for average of all for antennas (N=3000 points).

199

o e e =




CHAPTER VI

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

We did not detect a strange attractor with dimension less than three in
the data from the Saskatoon partial reflection radar for the time scales which
were studied. While we can not assert that there was only noise in the data set
because of the small number of points which were examined, the supporting
evidence from the power spectra suggest that we investigated time scales
K primarily in the viscous and inertial region and that the dimension of this

system was greater than 3,
The limited size of the data set was one of the major reasons we can

definitively rule out the presence of an aitractor of only less than dimension

ey

3. All indications are that the dominant signal was duc to noise. We interpret
this noise to be isotropic three dimcnsional turbu!:nce.
The difficulties in detecting a strange attractor in the saturation of

- middle atmosphere gravity waves have been discussed in Chapter V. It does

P

seem likely that the breaking of a gravity wave (or a spectrum of gravity
waves) may be so ephemeral that limitations in the current implementation of

the Grassberger~Procaccia algorithm will prevent us from ever detecting it.

< The decay to turbulence should occur quickly enough, even in the slower
. slantwise static instability mechanism, that there will not be a siatistically
significant number of orbits of the attractor to be useful. At least 50 orbits of
r the attractor are necessary to implement the Grassberger—Procaccia algorithm.
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An even bigger consideration remains - if the attractor is so ephemeral is it
1 worth the trouble to study?

A similar question remains as to what a strange attractor might mean
physically. In the case of the absorption of gravity waves, it still may provide
a clue as to a mechanism by which the wave becomes unstable. As pointed out
in previous discussions, the currently accepted conceptual models for gravity

wave breaking are most likely wrong if not merely inaccurate. Detecting the

o

presence of a strange attractor and its dimension would provide insight into
/ the route to chaos in this system and perhaps insight into the nature of the
‘ mechanism of gravity wave saturation,

If there is an attractor associated with the nonlinear wave-wave
interaction, does this reveal anything about the mechanism behind gravity
wave saturation or just something about the particular spectrum of waves
) undergoing saturation in the data set? We must be cautious in generalizing

any future results to gravity wave saturation itself.

6.2 Recommendations For Future Work

p This study raises many more questions than it has definitively
answered. While it seems unlikely that an attractor will be found which
describes the transition to chaos over a short time scale in meteorological data,
1 more work is needed before it can be absolutely discounted. The suggestions
for further study fall into three areas: work on the technique, extensicn of
this work with better radar data and extension of this work with boundary
¢ layer data.
The Grassberger-Procaccia algorithm and its extensions have been used
successfully in a number of different theoretical and laboratory studies of

chaotic behavior. Its weaknesses have been well studied and documented in

%

the literature, for the most part. We are uncertain whether this algorithm

gL A 4 e R e HERY
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could detect the presence of a strange attractor in the confusing welter of
competing signals that make up a typical meteorological data set. The degree of
sensitivity of the Grassberger-Procaccia algorithm to a signal that
encompasses a wide spectrum of different types of behavior (periodic, noise
and chaotic) must be established.

The Grassberger-Procaccia algorithm must be investigated as to its
ability to detect a strange attractor amidst noise and a spectrum of periodic
signals such as are found in a meteorological data set. This investigation must
determine the relative strength of the chaotic signal that is necessary to be
detected. It also must dctermine thc number of points needed to make it work.

This study should be extended to other middle atmosphere data sets so
that its conclusions may be confirmed. Such data sets must consist of much
longer records without the gain changes and contamination of the signal that
was found in the data used in this study. It would also be useful to employ this
technique on the radar derived winds which are closer to a truer description
of gravity waves. The ncbulous connection between the signals that are
measured by partial reflection radars and the middle atmosphere may obscure
the presence of chaotic behavior. Wind measurements deduced from the radar
signal do carry a degree of smoothing that could complicate the analysis, but
in general they will be more representative ..[ gravity wave behavior.

Other algorithms should be used to supplement the Grassberger—
Procaccia algorithm. The improved box counting algorithm (Liebovitch and
Toth, 1989) should be cxamined to determine if it is a useful adjunct to the
Grassberger—Procaccia algorithm. The nearest neighbor method of Badii and
Politi (1987) should be tried as well as some of the additional extensions of the
Grassberger—Procaccia algorithm (Franaszek, 1989; Ellner, 1988). Higuchi
(1988) has suggested an algorithm using a fractal length of curve technique
which shows promise for low (<2) dimension attractors; this might be tried as

well.
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The atmospheric boundary layer would be a logical place in which to
extend this study. Like the middle atmosphere, it is the home to unstable wave
activity that decays to turbulence (e.g., Kelvin—-Helmholtz waves). The study of
turbulence in the boundary layer is also well advanced. Most importantly,
measurements of the boundary layer are of a much higher quality than those
of the middle atmosphere. Most boundary layer parameters can be sampled in
situ rather than deduced by remote sensing techniques as is commonly done in
the middle atmosphere. The amount of external noise in boundary layer data is
also much less than that for the middle atmosphere. Measurements of several
different variables can be made which help provide a better understanding of
the dynamics of an attractor if one is found. In addition, measurements of the
boundary layer can bec made at much higher sampling rates and for longer
continuous periods than in the middle atmosphere.

Stationary data sets are perhaps an even greater problem in the
boundary layer than in the middle atmosphere. The boundary layer undergoes
a tremendous change during the diurnal heating cycle, exhibiting
remarkably different types of bechavior between daytime and nighttime. The
boundary layer study of Tsonis and Elsner (1988) was flawed not only because
it did not consider enough points in applying the Grassberger—Procaccia
algorithm and the data set was highly non-stationary, but because it offered no
reason (i.e., physical insight) as to why there might be a strange attractor in
meteorological data over a short time scale.

There may a greater chance of finding chaotic behavior in the
structure of turbulence rather than the transition from laminar to turbulent
flow. Recent work using multi-fractals suggests that the structure of
turbulence is fractal in nature (Chhabra et al., 1989; Meneveau and Nelkin,
1989; Smith et al.. 1986). There hints of this in the work here for time scales in
the viscous region. This is another avenue for research that should be

explored.
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4 APPENDIX A
S ¢
Appendix A contains the figures depicting the results of the correlation
integral calculations described in Chapter V for all antennas and levels. Output
from only every other embedding dimension are shown in an effort to render
L the figures more legible.
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APPENDIX B

This appendix contains figures depicting the slopes of the correlation
integral calculations shown in Appendix A. Thc slopes were calculated using a
seven point fit as described in Chapter V. Output from only every other

embedding dimension are shown in an effort to render the figures more

legible.
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